Dans cette Note nous établissons des conditions qui assument l'existence de domaines invariants par flot rétrograde de semi-groupes d'applications holomorphes d'un domaine D, simplement connexe, dans lui-même. De manière plus précise, étant donné un semi-groupe à un paramètre sur D, trouver un sous-ensemble connexe tel que chaque élément de soit un automorphisme de Ω, en d'autres termes tel que soit un groupe à un paramètre sur Ω.
In this Note, we study conditions which ensure the existence of backward flow invariant domains for semigroups of holomorphic self-mappings of a simply connected domain D. More precisely, the problem is the following. Given a one-parameter semigroup on D, find a simply connected subset such that each element of is an automorphism of Ω, in other words, such that forms a one-parameter group on Ω.
Accepté le :
Publié le :
@article{CRMATH_2008__346_5-6_293_0, author = {Elin, Mark and Shoikhet, David and Zalcman, Lawrence}, title = {A flower structure of backward flow invariant domains for semigroups}, journal = {Comptes Rendus. Math\'ematique}, pages = {293--296}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2007.11.024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.024/} }
TY - JOUR AU - Elin, Mark AU - Shoikhet, David AU - Zalcman, Lawrence TI - A flower structure of backward flow invariant domains for semigroups JO - Comptes Rendus. Mathématique PY - 2008 SP - 293 EP - 296 VL - 346 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.11.024/ DO - 10.1016/j.crma.2007.11.024 LA - en ID - CRMATH_2008__346_5-6_293_0 ER -
%0 Journal Article %A Elin, Mark %A Shoikhet, David %A Zalcman, Lawrence %T A flower structure of backward flow invariant domains for semigroups %J Comptes Rendus. Mathématique %D 2008 %P 293-296 %V 346 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.11.024/ %R 10.1016/j.crma.2007.11.024 %G en %F CRMATH_2008__346_5-6_293_0
Elin, Mark; Shoikhet, David; Zalcman, Lawrence. A flower structure of backward flow invariant domains for semigroups. Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 293-296. doi : 10.1016/j.crma.2007.11.024. http://www.numdam.org/articles/10.1016/j.crma.2007.11.024/
[1] Converging semigroups of holomorphic maps, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Volume 82 (1988) no. 8, pp. 223-227
[2] Spirallike functions with respect to a boundary point, J. Math. Anal. Appl., Volume 280 (2003), pp. 17-29
[3] On the iteration of analytic functions in a halfplane. II., J. London Math. Soc., Volume 20 (1979) no. 2, pp. 255-258
[4] Semigroups of analytic functions and composition operators, Michigan Math. J., Volume 25 (1978), pp. 101-115
[5] M.D. Contreras, S. Díaz-Madrigal, Ch. Pommerenke, Some remarks on Abel equation, preprint, 2005
[6] On boundary critical points for semigroups of analytic functions, Math. Scand., Volume 98 (2006), pp. 125-142
[7] Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995
[8] Fractional iteration and functional equations for functions analytic in the unit disk, Comput. Methods Funct. Theory, Volume 2 (2002), pp. 353-366
[9] Dynamics of inequalities in geometric function theory, J. Inequal. Appl., Volume 6 (2001), pp. 651-664
[10] Dynamic extension of the Julia–Wolff–Carathéodory Theorem, Dynam. Systems Appl., Volume 10 (2001), pp. 421-438
[11] On a conjecture of M.S. Robertson, Proc. Amer. Math. Soc., Volume 91 (1984), pp. 108-110
[12] On the iteration of analytic functions in a halfplane, J. London Math. Soc., Volume 19 (1979) no. 2, pp. 439-447
[13] Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal., Volume 3 (1998), pp. 203-228
[14] Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl., Volume 81 (1981), pp. 327-345
[15] Representations of holomorphic generators and distortion theorems for spirallike functions with respect to a boundary point, Int. J. Pure Appl. Math., Volume 5 (2003), pp. 335-361
[16] Subclasses of univalent functions starlike with respect to a boundary point, Houston J. Math., Volume 16 (1990), pp. 289-299
Cité par Sources :