Partial Differential Equations/Complex Analysis
A flower structure of backward flow invariant domains for semigroups
[Une structure en rosace de domaines invariants par flot rétrograde de semi-groupes]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 293-296.

Dans cette Note nous établissons des conditions qui assument l'existence de domaines invariants par flot rétrograde de semi-groupes d'applications holomorphes d'un domaine D, simplement connexe, dans lui-même. De manière plus précise, étant donné un semi-groupe S à un paramètre sur D, trouver un sous-ensemble connexe ΩD tel que chaque élément de S soit un automorphisme de Ω, en d'autres termes tel que S soit un groupe à un paramètre sur Ω.

In this Note, we study conditions which ensure the existence of backward flow invariant domains for semigroups of holomorphic self-mappings of a simply connected domain D. More precisely, the problem is the following. Given a one-parameter semigroup S on D, find a simply connected subset ΩD such that each element of S is an automorphism of Ω, in other words, such that S forms a one-parameter group on Ω.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.11.024
Elin, Mark 1 ; Shoikhet, David 1 ; Zalcman, Lawrence 2

1 Department of Mathematics, ORT Braude College, P.O. Box 78, Karmiel 21982, Israel
2 Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
@article{CRMATH_2008__346_5-6_293_0,
     author = {Elin, Mark and Shoikhet, David and Zalcman, Lawrence},
     title = {A flower structure of backward flow invariant domains for semigroups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {293--296},
     publisher = {Elsevier},
     volume = {346},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crma.2007.11.024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.024/}
}
TY  - JOUR
AU  - Elin, Mark
AU  - Shoikhet, David
AU  - Zalcman, Lawrence
TI  - A flower structure of backward flow invariant domains for semigroups
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 293
EP  - 296
VL  - 346
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.11.024/
DO  - 10.1016/j.crma.2007.11.024
LA  - en
ID  - CRMATH_2008__346_5-6_293_0
ER  - 
%0 Journal Article
%A Elin, Mark
%A Shoikhet, David
%A Zalcman, Lawrence
%T A flower structure of backward flow invariant domains for semigroups
%J Comptes Rendus. Mathématique
%D 2008
%P 293-296
%V 346
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.11.024/
%R 10.1016/j.crma.2007.11.024
%G en
%F CRMATH_2008__346_5-6_293_0
Elin, Mark; Shoikhet, David; Zalcman, Lawrence. A flower structure of backward flow invariant domains for semigroups. Comptes Rendus. Mathématique, Tome 346 (2008) no. 5-6, pp. 293-296. doi : 10.1016/j.crma.2007.11.024. http://www.numdam.org/articles/10.1016/j.crma.2007.11.024/

[1] Abate, M. Converging semigroups of holomorphic maps, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Volume 82 (1988) no. 8, pp. 223-227

[2] Aharonov, D.; Elin, M.; Shoikhet, D. Spirallike functions with respect to a boundary point, J. Math. Anal. Appl., Volume 280 (2003), pp. 17-29

[3] Baker, I.N.; Pommerenke, Ch. On the iteration of analytic functions in a halfplane. II., J. London Math. Soc., Volume 20 (1979) no. 2, pp. 255-258

[4] Berkson, E.; Porta, H. Semigroups of analytic functions and composition operators, Michigan Math. J., Volume 25 (1978), pp. 101-115

[5] M.D. Contreras, S. Díaz-Madrigal, Ch. Pommerenke, Some remarks on Abel equation, preprint, 2005

[6] Contreras, M.D.; Díaz-Madrigal, S.; Pommerenke, C. On boundary critical points for semigroups of analytic functions, Math. Scand., Volume 98 (2006), pp. 125-142

[7] Cowen, C.C.; MacCluer, B.D. Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995

[8] Elin, M.; Goryainov, V.; Reich, S.; Shoikhet, D. Fractional iteration and functional equations for functions analytic in the unit disk, Comput. Methods Funct. Theory, Volume 2 (2002), pp. 353-366

[9] Elin, M.; Reich, S.; Shoikhet, D. Dynamics of inequalities in geometric function theory, J. Inequal. Appl., Volume 6 (2001), pp. 651-664

[10] Elin, M.; Shoikhet, D. Dynamic extension of the Julia–Wolff–Carathéodory Theorem, Dynam. Systems Appl., Volume 10 (2001), pp. 421-438

[11] Lyzzaik, A. On a conjecture of M.S. Robertson, Proc. Amer. Math. Soc., Volume 91 (1984), pp. 108-110

[12] Pommerenke, Ch. On the iteration of analytic functions in a halfplane, J. London Math. Soc., Volume 19 (1979) no. 2, pp. 439-447

[13] Reich, S.; Shoikhet, D. Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal., Volume 3 (1998), pp. 203-228

[14] Robertson, M.S. Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl., Volume 81 (1981), pp. 327-345

[15] Shoikhet, D. Representations of holomorphic generators and distortion theorems for spirallike functions with respect to a boundary point, Int. J. Pure Appl. Math., Volume 5 (2003), pp. 335-361

[16] Silverman, H.; Silvia, E.M. Subclasses of univalent functions starlike with respect to a boundary point, Houston J. Math., Volume 16 (1990), pp. 289-299

Cité par Sources :