Harmonic Analysis
Failure of Wiener's property for positive definite periodic functions
[Contre-exemples à la propriété de Wiener pour les fonctions périodiques définies-positives]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 39-44.

On dit que l'exposant p possède la propriété de Wiener si toute fonction périodique définie-positive qui est de puissance p-ième intégrable au voisinage de 0 l'est sur un intervalle de période. C'est le cas des entiers pairs, d'après un résultat classique de Wiener. Nous avons récemment obtenu des phénomènes de concentration des polynômes idempotents ou définis-positifs sur un ensemble mesurable du tore qui nous permettent de donner une version forte du fait que les exposants p2N n'ont pas la propriété de Wiener, améliorant ainsi les résultats de Wainger et Shapiro.

We say that Wiener's property holds for the exponent p>0 whenever a positive definite function f, which belongs to Lp(ε,ε) for some ε>0, necessarily belongs to Lp(T), too. This holds true for p2N by a classical result of Wiener. Recently various concentration results were proved for idempotents and positive definite functions on measurable sets on the torus. They enable us to prove a sharp version of the failure of Wiener's property for p2N, strengthening results of Wainger and Shapiro.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.11.013
Bonami, Aline 1 ; Révész, Szilárd Gy. 2

1 Fédération Denis-Poisson, MAPMO-UMR 6628, département de mathématiques, Université d'Orléans, 45067 Orléans cedex 2, France
2 Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B. 127, 1364 Hungary
@article{CRMATH_2008__346_1-2_39_0,
     author = {Bonami, Aline and R\'ev\'esz, Szil\'ard Gy.},
     title = {Failure of {Wiener's} property for positive definite periodic functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {39--44},
     publisher = {Elsevier},
     volume = {346},
     number = {1-2},
     year = {2008},
     doi = {10.1016/j.crma.2007.11.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.013/}
}
TY  - JOUR
AU  - Bonami, Aline
AU  - Révész, Szilárd Gy.
TI  - Failure of Wiener's property for positive definite periodic functions
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 39
EP  - 44
VL  - 346
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.11.013/
DO  - 10.1016/j.crma.2007.11.013
LA  - en
ID  - CRMATH_2008__346_1-2_39_0
ER  - 
%0 Journal Article
%A Bonami, Aline
%A Révész, Szilárd Gy.
%T Failure of Wiener's property for positive definite periodic functions
%J Comptes Rendus. Mathématique
%D 2008
%P 39-44
%V 346
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.11.013/
%R 10.1016/j.crma.2007.11.013
%G en
%F CRMATH_2008__346_1-2_39_0
Bonami, Aline; Révész, Szilárd Gy. Failure of Wiener's property for positive definite periodic functions. Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 39-44. doi : 10.1016/j.crma.2007.11.013. http://www.numdam.org/articles/10.1016/j.crma.2007.11.013/

[1] Anderson, B.; Ash, J.M.; Jones, R.L.; Rider, D.G.; Saffari, B. Ann. Inst. Fourier, 57 (2007), pp. 1377-1404

[2] Bonami, A.; Révész, S. Integral concentration of idempotent trigonometric polynomials, 2007 | arXiv

[3] Déchamps-Gondim, M.; Lust-Piquard, F.; Queffélec, H. Estimations locales de sommes d'exponentielles, C. R. Acad. Sci. Paris Ser. I. Math., Volume 297 (1983), pp. 153-157

[4] Erdős, P.; Fuchs, W.H.J. On a problem of additive number theory, J. London Math. Soc., Volume 31 (1956), pp. 67-73

[5] Fournier, J.J.F. Local and global properties of functions and their Fourier transforms, Tôhoku Math. J., Volume 49 (1997), pp. 115-131

[6] Hlawka, E. Anwendung einer Zahlengeometrischen Methode von C.L. Siegel, Comment Math. Helvet., Volume 56 (1981), pp. 66-82

[7] Leinert, M. On a theorem of Wiener, Manuscripta Math., Volume 110 (2003) no. 1, pp. 1-12

[8] Logan, B.F. An interference problem for exponentials, Michigan Math. J., Volume 35 (1988), pp. 369-393

[9] Miheev, I.M. Series with gaps, Math. Sbornik (N.S.), Volume 98 (140) (1975) no. 4(12), pp. 538-563 (369)

[10] Mockenhaupt, G.; Schlag, W. On the Hardy–Littlewood majorant problem for random sets http://www-math-analysis.ku-eichstaett.de/~gerdm/wilhelm/maj.pdf (preprint)

[11] Shapiro, S. Majorant problems for Fourier coefficients, Quart. J. Math. Oxford (2), Volume 26 (1975), pp. 9-18

[12] Wainger, S. A problem of Wiener, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 16-18

[13] Wiener, N. A class of gap theorems, Ann. Scuola Norm. Sup. Pisa (2), Volume 3 (1934), pp. 367-372

[14] Zygmund, A. Trigonometric Series I–II, Cambridge University Press, Cambridge, 1959

Cité par Sources :