Notre travail est consacré à un problème d'existence presque globale pour des solutions d'équations de Klein–Gordon semi-linéaire à données petites faiblement décroissantes. Nous abordons le cas de non-linéarités quadratiques en , et ne vérifiant aucune autre condition de structure particulière, en dimension grande . Nous montrons que le problème considéré admet des solutions définies sur un intervalle de temps exponentiel en , où ε désigne la taille dans des données de Cauchy.
We study a problem of almost global existence for solutions of semilinear Klein–Gordon equations with small weakly decaying Cauchy data. Our work concerns nonlinearities which are quadratic in and do not have any other special structure. We prove that the solution exists over an interval of time exponential in , where ε is the size in of the Cauchy data. The main difficulty is to construct, using suitable local cut-offs, the function spaces in which the nonlinearities verify the necessary estimates for the proof of a contraction property.
Accepté le :
Publié le :
@article{CRMATH_2008__346_3-4_149_0, author = {Benoaga, Laurentiu}, title = {Long time existence problems for semilinear {Klein{\textendash}Gordon} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {149--154}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.11.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.012/} }
TY - JOUR AU - Benoaga, Laurentiu TI - Long time existence problems for semilinear Klein–Gordon equations JO - Comptes Rendus. Mathématique PY - 2008 SP - 149 EP - 154 VL - 346 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.11.012/ DO - 10.1016/j.crma.2007.11.012 LA - en ID - CRMATH_2008__346_3-4_149_0 ER -
%0 Journal Article %A Benoaga, Laurentiu %T Long time existence problems for semilinear Klein–Gordon equations %J Comptes Rendus. Mathématique %D 2008 %P 149-154 %V 346 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.11.012/ %R 10.1016/j.crma.2007.11.012 %G en %F CRMATH_2008__346_3-4_149_0
Benoaga, Laurentiu. Long time existence problems for semilinear Klein–Gordon equations. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 149-154. doi : 10.1016/j.crma.2007.11.012. http://www.numdam.org/articles/10.1016/j.crma.2007.11.012/
[1] A.-L. Benoaga, Problèmes d'existence en temps grand pour des équations de Klein–Gordon non linéaires, PhD Thesis, Paris 13 University, 2006
[2] Fourier transforms restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II, Geom. Funct. Anal., Volume 3 (1993), pp. 107-156 (202–262)
[3] Sur le temps d'existence pour l'équation de Klein–Gordon semi-linéaire en dimension 1, Bull. Soc. Math. France, Volume 125 (1997), pp. 269-311
[4] Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4), Volume 34 (2001) no. 1, pp. 1-61 Erratum Ann. Sci. École Norm. Sup. (4), 39, 2, 2006, pp. 335-345
[5] Almost global existence for solutions of semilinear Klein–Gordon equations with small weakly decaying Cauchy data, Comm. Partial Differential Equations, Volume 25 (2000) no. 11&12, pp. 2119-2169
[6] Generalized Strichartz inequalities for the wave equations, J. Funct. Anal., Volume 133 (1995), pp. 50-68
[7] Global existence of small amplitude solitons to nonlinear Klein–Gordon equations in four space–time dimensions, Comm. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 631-641
[8] Almost global existence of solutions for the quadratic semilinear Klein–Gordon equation in one space dimension, Funkcial. Ekvac., Volume 40 (1997) no. 2, pp. 313-333
[9] Global existence and asymptotic behavior of solutions for the Klein–Gordon with quadratic nonlinearity in two space dimensions, Math. Z., Volume 222 (1996) no. 3, pp. 341-362
[10] Normal forms and quadratic nonlinear Klein–Gordon equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 685-696
[11] On the equation in dimensions, Math. Res. Lett., Volume 6 (1999) no. 5–6, pp. 469-485
Cité par Sources :