Nous prouvons que le rang osculateur de la variété de Wilking
We prove that the osculating rank of the Wilking manifold
Accepté le :
Publié le :
@article{CRMATH_2008__346_1-2_67_0, author = {Mac{\'\i}as-Virg\'os, Enrique and Naveira, Antonio M. and Tarr{\'\i}o, Ana}, title = {The constant osculating rank of the {Wilking} manifold $ {V}_{3}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {67--70}, publisher = {Elsevier}, volume = {346}, number = {1-2}, year = {2008}, doi = {10.1016/j.crma.2007.11.009}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2007.11.009/} }
TY - JOUR AU - Macías-Virgós, Enrique AU - Naveira, Antonio M. AU - Tarrío, Ana TI - The constant osculating rank of the Wilking manifold $ {V}_{3}$ JO - Comptes Rendus. Mathématique PY - 2008 SP - 67 EP - 70 VL - 346 IS - 1-2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.11.009/ DO - 10.1016/j.crma.2007.11.009 LA - en ID - CRMATH_2008__346_1-2_67_0 ER -
%0 Journal Article %A Macías-Virgós, Enrique %A Naveira, Antonio M. %A Tarrío, Ana %T The constant osculating rank of the Wilking manifold $ {V}_{3}$ %J Comptes Rendus. Mathématique %D 2008 %P 67-70 %V 346 %N 1-2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2007.11.009/ %R 10.1016/j.crma.2007.11.009 %G en %F CRMATH_2008__346_1-2_67_0
Macías-Virgós, Enrique; Naveira, Antonio M.; Tarrío, Ana. The constant osculating rank of the Wilking manifold $ {V}_{3}$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 67-70. doi : 10.1016/j.crma.2007.11.009. https://www.numdam.org/articles/10.1016/j.crma.2007.11.009/
[1] T. Arias-Marco, A.M. Naveira, The osculating rank of the Jacobi operator on g.o. spaces. A method for solving the Jacobi equation, preprint
[2] An infinite family of 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc., Volume 81 (1975), pp. 93-97
[3] Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa, Volume 15 (1961), pp. 179-246
[4] Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics, vol. 194, Springer-Verlag, 1971
[5] On normal Riemannian homogeneous spaces of rank one, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 477-481
[6] Isotropic Jacobi fields and Jacobi's Equations on Riemannian Homogeneous Spaces, Comment. Math. Helvet., Volume 42 (1967), pp. 237-248
[7] C. Gónzalez-Dávila, A.M. Naveira, Isotropic Jacobi fields on normal homogeneous spaces with positive sectional curvature, preprint
[8] Tubes, Addison-Wesley, 1990
[9] Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math., Volume 142 (1979), pp. 157-198
[10] Foundations of Differential Geometry II, Interscience, New York, 1969
[11] A.M. Naveira, A. Tarrío, A method for the resolution of the Jacobi equation
[12] Optimal pinching constants of odd dimensional homogeneous spaces, Invent. Math., Volume 138 (1999) no. 3, pp. 631-684
[13] Totally geodesic submanifolds of naturally reductive homogeneous spaces, Tsukuba J. Math., Volume 20 (1996), pp. 181-190
[14] Totally geodesic submanifolds of Riemannian manifolds and curvature-invariant subspaces, Kodai Math. J., Volume 19 (1996), pp. 395-437
[15] The normal homogeneous space
Cité par Sources :
⁎ Work partially supported by Research Projects MTM2004-05082 (first author), MTM-2007-65852 (second author) and PGIDIT05PXIB16601PR (third author).