Nous prouvons que le rang osculateur de la variété de Wilking vaut 2, lorsque on considère la metrique . La connaissance du rang osculateur nous permet de resoudre l'équation différentielle des champs de vecteurs de Jacobi. Ces résultats peuvent être appliqués pour déterminer l'aire et le volume des sphères et boules géodesiques.
We prove that the osculating rank of the Wilking manifold , endowed with the metric , equals 2. The knowledge of the osculating rank allows us to solve the differential equation of the Jacobi vector fields. These results can be applied to determine the area and the volume of geodesic spheres and balls.
Accepté le :
Publié le :
@article{CRMATH_2008__346_1-2_67_0, author = {Mac{\'\i}as-Virg\'os, Enrique and Naveira, Antonio M. and Tarr{\'\i}o, Ana}, title = {The constant osculating rank of the {Wilking} manifold $ {V}_{3}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {67--70}, publisher = {Elsevier}, volume = {346}, number = {1-2}, year = {2008}, doi = {10.1016/j.crma.2007.11.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.009/} }
TY - JOUR AU - Macías-Virgós, Enrique AU - Naveira, Antonio M. AU - Tarrío, Ana TI - The constant osculating rank of the Wilking manifold $ {V}_{3}$ JO - Comptes Rendus. Mathématique PY - 2008 SP - 67 EP - 70 VL - 346 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.11.009/ DO - 10.1016/j.crma.2007.11.009 LA - en ID - CRMATH_2008__346_1-2_67_0 ER -
%0 Journal Article %A Macías-Virgós, Enrique %A Naveira, Antonio M. %A Tarrío, Ana %T The constant osculating rank of the Wilking manifold $ {V}_{3}$ %J Comptes Rendus. Mathématique %D 2008 %P 67-70 %V 346 %N 1-2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.11.009/ %R 10.1016/j.crma.2007.11.009 %G en %F CRMATH_2008__346_1-2_67_0
Macías-Virgós, Enrique; Naveira, Antonio M.; Tarrío, Ana. The constant osculating rank of the Wilking manifold $ {V}_{3}$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 67-70. doi : 10.1016/j.crma.2007.11.009. http://www.numdam.org/articles/10.1016/j.crma.2007.11.009/
[1] T. Arias-Marco, A.M. Naveira, The osculating rank of the Jacobi operator on g.o. spaces. A method for solving the Jacobi equation, preprint
[2] An infinite family of 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc., Volume 81 (1975), pp. 93-97
[3] Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa, Volume 15 (1961), pp. 179-246
[4] Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics, vol. 194, Springer-Verlag, 1971
[5] On normal Riemannian homogeneous spaces of rank one, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 477-481
[6] Isotropic Jacobi fields and Jacobi's Equations on Riemannian Homogeneous Spaces, Comment. Math. Helvet., Volume 42 (1967), pp. 237-248
[7] C. Gónzalez-Dávila, A.M. Naveira, Isotropic Jacobi fields on normal homogeneous spaces with positive sectional curvature, preprint
[8] Tubes, Addison-Wesley, 1990
[9] Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math., Volume 142 (1979), pp. 157-198
[10] Foundations of Differential Geometry II, Interscience, New York, 1969
[11] A.M. Naveira, A. Tarrío, A method for the resolution of the Jacobi equation on the manifold , preprint
[12] Optimal pinching constants of odd dimensional homogeneous spaces, Invent. Math., Volume 138 (1999) no. 3, pp. 631-684
[13] Totally geodesic submanifolds of naturally reductive homogeneous spaces, Tsukuba J. Math., Volume 20 (1996), pp. 181-190
[14] Totally geodesic submanifolds of Riemannian manifolds and curvature-invariant subspaces, Kodai Math. J., Volume 19 (1996), pp. 395-437
[15] The normal homogeneous space has positive sectional curvature, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 1191-1194
Cité par Sources :
⁎ Work partially supported by Research Projects MTM2004-05082 (first author), MTM-2007-65852 (second author) and PGIDIT05PXIB16601PR (third author).