On étudie l'équation de Schrödinger non linéaire sur une variété compacte ou sur , où V est un potentiel positif, régulier et . Lorsque ε tend vers zéro, on montre l'existence de solutions à valeurs complexes qui se concentrent le long d'une courbe fermée et dont la phase est hautement oscillante, portant un moment quantique le long de l'ensemble limite.
We study the nonlinear Schrödinger equation on a compact manifold or on , where V is a positive potential and . As ε tends to zero, we prove existence of complex-valued solutions which concentrate along closed curves and whose phase is highly oscillatory, carrying quantum-mechanical momentum along the limit set.
Accepté le :
Publié le :
@article{CRMATH_2008__346_1-2_33_0, author = {Mahmoudi, Fethi and Malchiodi, Andrea and Montenegro, Marcelo}, title = {Solutions to the nonlinear {Schr\"odinger} equation carrying momentum along a curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {33--38}, publisher = {Elsevier}, volume = {346}, number = {1-2}, year = {2008}, doi = {10.1016/j.crma.2007.11.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.11.008/} }
TY - JOUR AU - Mahmoudi, Fethi AU - Malchiodi, Andrea AU - Montenegro, Marcelo TI - Solutions to the nonlinear Schrödinger equation carrying momentum along a curve JO - Comptes Rendus. Mathématique PY - 2008 SP - 33 EP - 38 VL - 346 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.11.008/ DO - 10.1016/j.crma.2007.11.008 LA - en ID - CRMATH_2008__346_1-2_33_0 ER -
%0 Journal Article %A Mahmoudi, Fethi %A Malchiodi, Andrea %A Montenegro, Marcelo %T Solutions to the nonlinear Schrödinger equation carrying momentum along a curve %J Comptes Rendus. Mathématique %D 2008 %P 33-38 %V 346 %N 1-2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.11.008/ %R 10.1016/j.crma.2007.11.008 %G en %F CRMATH_2008__346_1-2_33_0
Mahmoudi, Fethi; Malchiodi, Andrea; Montenegro, Marcelo. Solutions to the nonlinear Schrödinger equation carrying momentum along a curve. Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 33-38. doi : 10.1016/j.crma.2007.11.008. http://www.numdam.org/articles/10.1016/j.crma.2007.11.008/
[1] Perturbation Methods and Semilinear Elliptic Problems on , Progr. Math., vol. 240, Birkhäuser, 2005
[2] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Commun. Math. Phys., Volume 235 (2003), pp. 427-466
[3] On a class of solutions with non vanishing angular momentum for nonlinear Schrödinger equation, Differential Integral Equations, Volume 16 (2003) no. 3, pp. 349-384
[4] Concentration at curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., Volume 60 (2007) no. 1, pp. 113-146
[5] Concentration at manifolds of arbitrary dimension for a singularly perturbed Neumann problem, Rend. Lincei Mat. Appl., Volume 17 (2003) no. 2006, pp. 279-290
[6] Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math., Volume 209 (2007), pp. 460-525
[7] F. Mahmoudi, A. Malchiodi, M. Montenegro, Solutions to the nonlinear Schrödinger equation carrying momentum along a curve. Part I: Study of the limit set and approximate solutions, preprint
[8] F. Mahmoudi, A. Malchiodi, Solutions to the nonlinear Schrödinger equation carrying momentum along a curve. Part II: Proof of the existence result, preprint
[9] Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, GAFA, Volume 15 (2005) no. 6, pp. 1162-1222
[10] Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., Volume 55 (2002) no. 12, pp. 1507-1568
[11] Multidimensional boundary-layers for a singularly perturbed Neumann problem, Duke Math. J., Volume 124 (2004) no. 1, pp. 105-143
[12] Foliations by constant mean curvature tubes, Comm. Anal. Geom., Volume 13 (2005) no. 4, pp. 633-670
[13] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., Volume 45 (1998) no. 1, pp. 9-18
[14] Nonlinear stabilization of quasimodes, Univ. Hawaii, Honolulu, Hawaii, 1979 (Proc. Sympos. Pure Math.), Volume vol. XXXVI, Amer. Math. Soc., Providence, RI (1980), pp. 301-318 MR0573443 (82d:58016)
Cité par Sources :