J. Kollár a obtenu un résultat sur les fibres spéciales des familles d'hypersurfaces dont la fibre générique satisfait l'hypothèse
Building upon a result of J. Kollár on special fibres of families of hypersurfaces whose generic fibre satisfies the
Accepté le :
Publié le :
@article{CRMATH_2008__346_1-2_63_0, author = {Colliot-Th\'el\`ene, Jean-Louis}, title = {Fibre sp\'eciale des hypersurfaces de petit degr\'e}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--65}, publisher = {Elsevier}, volume = {346}, number = {1-2}, year = {2008}, doi = {10.1016/j.crma.2007.11.002}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/j.crma.2007.11.002/} }
TY - JOUR AU - Colliot-Thélène, Jean-Louis TI - Fibre spéciale des hypersurfaces de petit degré JO - Comptes Rendus. Mathématique PY - 2008 SP - 63 EP - 65 VL - 346 IS - 1-2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.11.002/ DO - 10.1016/j.crma.2007.11.002 LA - fr ID - CRMATH_2008__346_1-2_63_0 ER -
%0 Journal Article %A Colliot-Thélène, Jean-Louis %T Fibre spéciale des hypersurfaces de petit degré %J Comptes Rendus. Mathématique %D 2008 %P 63-65 %V 346 %N 1-2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2007.11.002/ %R 10.1016/j.crma.2007.11.002 %G fr %F CRMATH_2008__346_1-2_63_0
Colliot-Thélène, Jean-Louis. Fibre spéciale des hypersurfaces de petit degré. Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 63-65. doi : 10.1016/j.crma.2007.11.002. https://www.numdam.org/articles/10.1016/j.crma.2007.11.002/
[1] Diophantine problems over local fields, I, Amer. J. Math., Volume 87 (1965), pp. 605-631
[2] Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes, J. Algebraic Geom., Volume 15 (2006), pp. 733-752
[3] Surfaces de Del Pezzo sans point rationnel sur un corps de dimension cohomologique un, J. Instit. Math. Jussieu, Volume 3 (2004), pp. 1-16
[4] Dimension cohomologique et points rationnels sur les courbes, J. Algebra, Volume 203 (1998), pp. 349-354
[5] Rational points in Henselian discrete valuation rings, Publ. Math. I.H.É.S., Volume 31 (1966), pp. 59-64
[6] The dimension of fields and algebraic K-theory, J. Number Theory, Volume 24 (1986), pp. 229-244
[7] J. Kollár, A conjecture of Ax and degenerations of Fano varieties, Israel J. Math., à paraître
[8] On quasi algebraic closure, Ann. of Math., Volume 55 (1952) no. 2, pp. 373-390
[9] Quadratic Forms with Applications to Algebraic Geometry and Topology, London Mathematical Society Lecture Note Series, vol. 217, Cambridge University Press, Cambridge, 1995
[10] On the fibration method for proving the Hasse principle and weak approximation (Goldstein, C., ed.), Séminaire de théorie des nombres de Paris 1988–1999, Progr. Math., vol. 91, Birkhäuser, 1990, pp. 205-219
- ON THE ARITHMETICAL SURJECTIVITY CONJECTURE OF COLLIOT-THELENE, Revue Roumaine Mathematiques Pures Appliquees, Volume LXIX (2025) no. 3-4, p. 107 | DOI:10.59277/rrmpa.2025.107.132
- Weak Approximation for del Pezzo Surfaces of Low Degree, International Mathematics Research Notices, Volume 2023 (2023) no. 13, p. 11549 | DOI:10.1093/imrn/rnac167
- Proof of a conjecture of Colliot-Thélène and a diophantine excision theorem, Algebra Number Theory, Volume 13 (2019) no. 9, p. 1983 | DOI:10.2140/ant.2019.13.1983
- Local–global principle for 0-cycles on fibrations over rationally connected bases, Advances in Mathematics, Volume 297 (2016), p. 214 | DOI:10.1016/j.aim.2016.04.013
- Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences, Arithmetic Geometry, Volume 2009 (2011), p. 1 | DOI:10.1007/978-3-642-15945-9_1
Cité par 5 documents. Sources : Crossref