On montre un théorème du complémentaire explicite « à la Gabrielov '96 » dans les structures o-minimales polynomialement bornées. Cette propriété équivaut à la modèle complétude de la structure , où est une algèbre différentielle globale d'applications définissables dans une structure o-minimale polynomialement bornée.
We show an explicit theorem of the complement “Gabrielov's '96 like” for o-minimal polynomially bounded structures. In model theoretic terms, this is equivalent to the model completeness of where is a global differential algebra of maps definable in an o-minimal polynomially bounded structure.
Accepté le :
Publié le :
@article{CRMATH_2008__346_1-2_59_0, author = {Le Gal, Olivier}, title = {Mod\`ele compl\'etude des structures o-minimales polynomialement born\'ees}, journal = {Comptes Rendus. Math\'ematique}, pages = {59--62}, publisher = {Elsevier}, volume = {346}, number = {1-2}, year = {2008}, doi = {10.1016/j.crma.2007.10.049}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.10.049/} }
TY - JOUR AU - Le Gal, Olivier TI - Modèle complétude des structures o-minimales polynomialement bornées JO - Comptes Rendus. Mathématique PY - 2008 SP - 59 EP - 62 VL - 346 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.10.049/ DO - 10.1016/j.crma.2007.10.049 LA - fr ID - CRMATH_2008__346_1-2_59_0 ER -
%0 Journal Article %A Le Gal, Olivier %T Modèle complétude des structures o-minimales polynomialement bornées %J Comptes Rendus. Mathématique %D 2008 %P 59-62 %V 346 %N 1-2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.10.049/ %R 10.1016/j.crma.2007.10.049 %G fr %F CRMATH_2008__346_1-2_59_0
Le Gal, Olivier. Modèle complétude des structures o-minimales polynomialement bornées. Comptes Rendus. Mathématique, Tome 346 (2008) no. 1-2, pp. 59-62. doi : 10.1016/j.crma.2007.10.049. http://www.numdam.org/articles/10.1016/j.crma.2007.10.049/
[1] An Introduction to o-Minimal Geometry, Instituti editoriali e poligrafici internazionali, 2000
[2] P-adic and real subanalytic sets, Ann. Math., Volume 128 (1988), pp. 79-138
[3] Projections of semianalytic sets, Funct. Anal. Appl., Volume 2 (1968), pp. 282-291
[4] Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., Volume 125 (1996), pp. 1-12
[5] Expansions of the real field with power functions, Ann. Pure Appl. Logic, Volume 68 (1994) no. 1, pp. 79-94
[6] A. Rambaud, Thèse, Paris, 2005
[7] Quasianalytic Denjoy–Carleman classes and o-minimality, J. Amer. Math. Soc., Volume 16 (2003) no. 4, pp. 751-777 (electronic)
[8] Geometric categories and o-minimal structures, Duke Math. J., Volume 84 (1996), pp. 497-540
[9] A theorem of the complement and some new o-minimal structures, Sel. Math., Volume 5 (1999), pp. 397-421
Cité par Sources :