La mesure de dépendance quadratique peut-être reliée aux mesures utilisées dans les tests d'indépendance, mais étant de plus dérivable, on peut l'utiliser dans les méthodes d'analyse en composantes indépendantes. Un noyau ajustable permet d'accélérer la convergence de l'estimateur sans pour autant affecter son biais.
The quadratic dependence measure is related to measures used in independence tests, but is derivable, thus suitable for independent component analysis. An adjustable kernel allows to accelerate the convergence of the estimator without affecting the bias.
Accepté le :
Publié le :
@article{CRMATH_2008__346_3-4_213_0, author = {Achard, Sophie}, title = {Asymptotic properties of a dimension-robust quadratic dependence measure}, journal = {Comptes Rendus. Math\'ematique}, pages = {213--216}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.10.043}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.10.043/} }
TY - JOUR AU - Achard, Sophie TI - Asymptotic properties of a dimension-robust quadratic dependence measure JO - Comptes Rendus. Mathématique PY - 2008 SP - 213 EP - 216 VL - 346 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.10.043/ DO - 10.1016/j.crma.2007.10.043 LA - en ID - CRMATH_2008__346_3-4_213_0 ER -
%0 Journal Article %A Achard, Sophie %T Asymptotic properties of a dimension-robust quadratic dependence measure %J Comptes Rendus. Mathématique %D 2008 %P 213-216 %V 346 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.10.043/ %R 10.1016/j.crma.2007.10.043 %G en %F CRMATH_2008__346_3-4_213_0
Achard, Sophie. Asymptotic properties of a dimension-robust quadratic dependence measure. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 213-216. doi : 10.1016/j.crma.2007.10.043. http://www.numdam.org/articles/10.1016/j.crma.2007.10.043/
[1] S. Achard, D.T. Pham, C. Jutten, Quadratic dependence measure for non linear blind sources separation, in: Proc. Int. Workshop ICA2003, April 2003, pp. 263–268
[2] Distribution free tests of independence based on the sample distribution functions, Ann. Math. Stat., Volume 32 (1961), pp. 485-498
[3] Consistent independent component analysis and prewhitening, IEEE Trans. Signal Processing, Volume 53 (2005) no. 10, pp. 3625-3632
[4] Limit behaviour of the empirical characteristic function, Ann. Probab., Volume 9 (1981) no. 1, pp. 130-144
[5] Characteristic function based independent component analysis, Signal Processing, Volume 83 (2003), pp. 2195-2208
[6] A consistent test for bivariate dependence, Int. Statist. Rev., Volume 61 (1993) no. 3, pp. 419-433
[7] A class of statistics with asymptotically normal distribution, Ann. Math. Stat., Volume 19 (1948), pp. 293-325
[8] A non-parametric test of independence, Ann. Math. Stat., Volume 19 (1948), pp. 546-557
[9] A. Kankainen, Consistent testing of total independence based on empirical characteristic functions, PhD thesis, University of Jyväskylä, 1995
[10] A quadratic measure of deviation of two-dimensional density estimates and a test of independence, Ann. Statist., Volume 3 (1975) no. 1, pp. 1-14
Cité par Sources :