[Unicité du plongement de mesures de probabilité gaussiennes dans un semigroupe de convolution continu sur des groupes de Lie nilpotents et simplement connexes]
Soient () des semigroupes de convolution continus sur un groupe de Lie G nilpotent et simplement connexe. Si et si est un semigroupe gaussien (au sens que sa distribution génératrice ne consiste que d'une distribution primitive et d'un opérateur différentiel de second ordre), alors pour tout .
Let () be continuous convolution semigroups on a simply connected nilpotent Lie group G. Suppose that and that is a Gaussian semigroup (in the sense that its generating distribution just consists of a primitive distribution and a second order differential operator). Then for all .
Accepté le :
Publié le :
@article{CRMATH_2008__346_15-16_887_0, author = {Neuenschwander, Daniel}, title = {Uniqueness of embedding of {Gaussian} probability measures into a continuous convolution semigroup on simply connected nilpotent {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {887--892}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2007.10.038}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.10.038/} }
TY - JOUR AU - Neuenschwander, Daniel TI - Uniqueness of embedding of Gaussian probability measures into a continuous convolution semigroup on simply connected nilpotent Lie groups JO - Comptes Rendus. Mathématique PY - 2008 SP - 887 EP - 892 VL - 346 IS - 15-16 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.10.038/ DO - 10.1016/j.crma.2007.10.038 LA - en ID - CRMATH_2008__346_15-16_887_0 ER -
%0 Journal Article %A Neuenschwander, Daniel %T Uniqueness of embedding of Gaussian probability measures into a continuous convolution semigroup on simply connected nilpotent Lie groups %J Comptes Rendus. Mathématique %D 2008 %P 887-892 %V 346 %N 15-16 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.10.038/ %R 10.1016/j.crma.2007.10.038 %G en %F CRMATH_2008__346_15-16_887_0
Neuenschwander, Daniel. Uniqueness of embedding of Gaussian probability measures into a continuous convolution semigroup on simply connected nilpotent Lie groups. Comptes Rendus. Mathématique, Tome 346 (2008) no. 15-16, pp. 887-892. doi : 10.1016/j.crma.2007.10.038. http://www.numdam.org/articles/10.1016/j.crma.2007.10.038/
[1] Unicité du plongement d'une mesure de probabilité dans un semi-groupe de convolution gaussien. Cas non-abélien, Math. Z., Volume 188 (1985), pp. 411-417
[2] Ueber die Charakterisierung unendlich teilbarer Wahrscheinlichkeitsverteilungen, J. Reine Angew. Math., Volume 201 (1959), pp. 150-156
[3] Infinitely divisible distributions on connected nilpotent Lie groups, J. London Math. Soc. (2), Volume 7 (1974), pp. 584-588
[4] Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups, Probab. Theory Rel. Fields, Volume 109 (1997), pp. 101-127
[5] Cramér theorem on symmetric spaces of noncompact type, J. Theoret. Probab., Volume 7 (1994) no. 3, pp. 609-613
[6] Ueber Wurzeln und Logarithmen beschränkter Masse, Z. Wahrsch. Verw. Geb., Volume 20 (1971), pp. 259-270
[7] The domains of partial attraction of probabilities on groups and on vector spaces, J. Theoret. Probab., Volume 6 (1993) no. 1, pp. 175-186
[8] Stable Probability Measures on Euclidean Spaces and Locally Compact Groups. Structural Properties and Limit Theorems, Kluwer Academic Publishers, Dordrecht, 2001
[9] Probability Measures on Locally Compact Groups, Springer, Berlin, 1977
[10] Probabilities on the Heisenberg Group: Limit Theorems and Brownian Motion, Lecture Notes in Mathematics, vol. 1630, Springer, Berlin, 1996
[11] On the uniqueness problem for continuous convolution semigroups of probability measures on simply connected nilpotent Lie groups, Publ. Math. Debrecen, Volume 53 (1998) no. 3–4, pp. 415-422
[12] s-stable semigroups on simply connected step 2-nilpotent Lie groups, AMS special session, Gainesville, FL, USA, March 12–13, 1999 (Budzban, G. et al., eds.) (Contemporary Mathematics), Volume vol. 261, Amer. Math. Soc., Providence, RI (2000), pp. 59-70
[13] Limit theorems for probability measures on simply connected nilpotent Lie groups, J. Theoret. Probab., Volume 4 (1991) no. 2, pp. 261-284
[14] Uniqueness of embedding into a Gaussian semigroup on a nilpotent Lie group, Arch. Math. (Basel), Volume 62 (1994), pp. 282-288
[15] Une loi du logarithme itéré pour certaines intégrales stochastiques, C. R. Acad. Sci. Paris, Sér. I, Volume 292 (1981), pp. 295-298
[16] Lie Algebras and Lie Groups, Benjamin, New York, 1965
[17] Ueber die Erzeugung von Faltungshalbgruppen auf beliebigen lokalkompakten Gruppen, Math. Z., Volume 131 (1973), pp. 313-333
[18] Fourier analysis and limit theorems for convolution semigroups on a locally compact group, Adv. Math., Volume 39 (1981), pp. 111-154
Cité par Sources :