Probability Theory
Some remarks about the positivity of random variables on a Gaussian probability space
[Quelques remarques sur la positivité des variables aléatoires définies sur un espace gaussien.]
Comptes Rendus. Mathématique, Tome 339 (2004) no. 12, pp. 873-877.

Soit (W,H,μ) un espace de Wiener abstrait et soit LLlogL une variable aléatoire positive. A l'aide de la théorie de transport de mesure de Monge–Kantorovitch, nous montrons que le noyau de la projection de L dans le second chaos de Wiener est un opérateur de spectre inférieurement borné et que l'opérateur correspondant est inférieurement borné par un opérateur Hilbert–Schmidt semi-positif.

Let (W,H,μ) be an abstract Wiener space and let LLlogL(μ) is a positive random variable. Using the measure transportation of Monge–Kantorovitch, we prove that the operator corresponding to the kernel of the projection of L on the second Wiener chaos is lower bounded by a semi-positive Hilbert–Schmidt operator.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.10.014
Feyel, Denis 1 ; Üstünel, A. Suleyman 2

1 Université d'Evry-Val-d'Essone, département de mathématiques, 91025 Evry cedex, France
2 ENST, département Infres, 46, rue Barrault, 75013 Paris, France
@article{CRMATH_2004__339_12_873_0,
     author = {Feyel, Denis and \"Ust\"unel, A. Suleyman},
     title = {Some remarks about the positivity of random variables on a {Gaussian} probability space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {873--877},
     publisher = {Elsevier},
     volume = {339},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crma.2004.10.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.10.014/}
}
TY  - JOUR
AU  - Feyel, Denis
AU  - Üstünel, A. Suleyman
TI  - Some remarks about the positivity of random variables on a Gaussian probability space
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 873
EP  - 877
VL  - 339
IS  - 12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.10.014/
DO  - 10.1016/j.crma.2004.10.014
LA  - en
ID  - CRMATH_2004__339_12_873_0
ER  - 
%0 Journal Article
%A Feyel, Denis
%A Üstünel, A. Suleyman
%T Some remarks about the positivity of random variables on a Gaussian probability space
%J Comptes Rendus. Mathématique
%D 2004
%P 873-877
%V 339
%N 12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.10.014/
%R 10.1016/j.crma.2004.10.014
%G en
%F CRMATH_2004__339_12_873_0
Feyel, Denis; Üstünel, A. Suleyman. Some remarks about the positivity of random variables on a Gaussian probability space. Comptes Rendus. Mathématique, Tome 339 (2004) no. 12, pp. 873-877. doi : 10.1016/j.crma.2004.10.014. http://www.numdam.org/articles/10.1016/j.crma.2004.10.014/

[1] Brenier, Y. Polar factorization and monotone rearrangement of vector valued functions, Commun. Pure Appl. Math., Volume 44 (1991), pp. 375-417

[2] Dunford, N.; Schwartz, J.T. Linear Operators, 2, Interscience, 1963

[3] D. Feyel, A survey on the Monge transport problem, Preprint, 2004

[4] Feyel, D.; de La Pradelle, A. Capacités gaussiennes, Ann. Inst. Fourier, Volume 41 (1991) no. 1, pp. 49-76

[5] Feyel, D.; Üstünel, A.S. The notion of convexity and concavity on Wiener space, J. Funct. Anal., Volume 176 (2000), pp. 400-428

[6] Feyel, D.; Üstünel, A.S. Transport of measures on Wiener space and the Girsanov theorem, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 1, pp. 1025-1028

[7] Feyel, D.; Üstünel, A.S. Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space, Probab. Theory Related Fields, Volume 128 (2004), pp. 347-385

[8] Feyel, D.; Üstünel, A.S. Monge–Kantorovitch measure transportation, Monge–Ampère equation and the Itô calculus, Adv. Stud. Pure Math., vol. 41, Mathematical Society of Japan, 2004, pp. 49-74

[9] Feyel, D.; Üstünel, A.S. The strong solution of the Monge–Ampère equation on the Wiener space for log-concave densities, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 1, pp. 49-53

[10] Itô, K. Multiple Wiener integral, J. Math. Soc. Japan, Volume 3 (1951), pp. 157-164

[11] Malliavin, P. Stochastic Analysis, Springer-Verlag, 1997

[12] McKean, H.P. Geometry of differential space, Ann. Probab., Volume 1 (1973), pp. 197-206

[13] Ruiz de Chavez, J.; Meyer, P.A. Positivité sur l'espace de Fock, Séminaire de Probabilités XXIV, Lecture Notes in Math., vol. 1426, Springer, 1990, pp. 461-465

[14] Stroock, D.W. Homogeneous chaos revisited, Séminaire de Probabilités XXI, Lecture Notes in Math., vol. 1247, Springer, 1987, pp. 1-8

[15] Üstünel, A.S. Introduction to Analysis on Wiener Space, Lecture Notes in Math., vol. 1610, Springer, 1995

[16] Üstünel, A.S.; Zakai, M. Transformation of Measure on Wiener Space, Springer-Verlag, 1999

[17] Wiener, N. The homogeneous chaos, Amer. J. Math., Volume 60 (1930), pp. 897-936

Cité par Sources :