Partial Differential Equations
An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up
[Une phénomène de variation extrême pour quelque problèmes elliptiques non linéaires avec explosion au bord.]
Comptes Rendus. Mathématique, Tome 339 (2004) no. 10, pp. 689-694.

Soit Ω un domaine borné, régulier de RN (N2) et Γ un sous-ensemble ouvert et fermé de ∂Ω. On désigne par B ou bien une condition de Dirichlet ou bien une condition mixte sur ΓB:=ΩΓ si ΓΩ. On étudie le problème elliptique non-linéaire Δu+au=b(x)f(u) dans Ω, avec la condition Bu=0 sur ΓB si ΓB, où a est un réel, b est une fonction continue non-négative dans Ω¯ et f0 est continue sur [0,) telle que f(u)/u est strictement croissante sur (0,). Supposons que f varie rapidement à l'infini d'index ∞ (i.e., limuf(λu)/f(u)=λ pour tout λ>0), on établit alors l'unicité de la solution positive avec u= sur Γ et on décrit le taux d'explosion au bord en utilisant la théorie des valeurs extrêmes.

Let Ω be a smooth bounded domain in RN (N2) and Γ be a non-empty open and closed subset of ∂Ω. Denote by B either the Dirichlet or the mixed boundary operator on ΓB:=ΩΓ when ΓΩ. We consider the nonlinear elliptic problem Δu+au=b(x)f(u) in Ω, subject to Bu=0 on ΓB when ΓB, where a is a real number, b is a continuous non-negative function on Ω¯, while f0 is continuous on [0,) such that f(u)/u is increasing on (0,). Assuming that f varies rapidly at infinity with index ∞ (i.e., limuf(λu)/f(u)=λ for all λ>0), we establish the uniqueness of the positive solution satisfying u= on Γ and describe its blow-up rate via the extreme value theory.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.10.005
Cîrstea, Florica-Corina 1

1 School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, Melbourne, VIC 8001, Australia
@article{CRMATH_2004__339_10_689_0,
     author = {C{\^\i}rstea, Florica-Corina},
     title = {An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {689--694},
     publisher = {Elsevier},
     volume = {339},
     number = {10},
     year = {2004},
     doi = {10.1016/j.crma.2004.10.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.10.005/}
}
TY  - JOUR
AU  - Cîrstea, Florica-Corina
TI  - An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 689
EP  - 694
VL  - 339
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.10.005/
DO  - 10.1016/j.crma.2004.10.005
LA  - en
ID  - CRMATH_2004__339_10_689_0
ER  - 
%0 Journal Article
%A Cîrstea, Florica-Corina
%T An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up
%J Comptes Rendus. Mathématique
%D 2004
%P 689-694
%V 339
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.10.005/
%R 10.1016/j.crma.2004.10.005
%G en
%F CRMATH_2004__339_10_689_0
Cîrstea, Florica-Corina. An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up. Comptes Rendus. Mathématique, Tome 339 (2004) no. 10, pp. 689-694. doi : 10.1016/j.crma.2004.10.005. http://www.numdam.org/articles/10.1016/j.crma.2004.10.005/

[1] Bandle, C.; Marcus, M. ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness, and asymptotic behaviour, J. Anal. Math., Volume 58 (1992), pp. 9-24

[2] Bieberbach, L. Δu=eu und die automorphen Funktionen, Math. Ann., Volume 77 (1916), pp. 173-212

[3] Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation, Cambridge University Press, Cambridge, 1987

[4] F.-C. Cîrstea, Y. Du, General uniqueness results and variation speed for blow-up solutions of elliptic equations, submitted for publication

[5] Cîrstea, F.-C.; Rădulescu, V. Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 447-452

[6] Cîrstea, F.-C.; Rădulescu, V. Extremal singular solutions for degenerate logistic-type equations in anisotropic media, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 119-124

[7] Rademacher, H. Einige besondere Probleme der partiellen Differentialgleichungen, Die Differential und Integralgleichungen der Mechanik und Physik I, Rosenberg, New York, 1943, pp. 838-845

[8] Resnick, S.I. Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, 1987

Cité par Sources :