Nous présentons un problème de reconstruction de polynômes linéaires ainsi qu'un algorithme en temps polynomial de résolution de ce problème dans un cas simple. Nous en déduisons un algorithme alternatif performant de décodage des codes de Gabidulin introduits en 1985.
We describe a reconstruction problem for linearized polynomials. We equally describe a polynomial-time algorithm enabling to solve this problem in a simple case. From this algorithm we deduce an alternative efficient decoding algorithm for Gabidulin codes introduced in 1985.
Accepté le :
Publié le :
@article{CRMATH_2004__339_10_745_0, author = {Loidreau, Pierre}, title = {Sur la reconstruction des polyn\^omes lin\'eaires : un nouvel algorithme de d\'ecodage des codes de {Gabidulin}}, journal = {Comptes Rendus. Math\'ematique}, pages = {745--750}, publisher = {Elsevier}, volume = {339}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.10.004}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.10.004/} }
TY - JOUR AU - Loidreau, Pierre TI - Sur la reconstruction des polynômes linéaires : un nouvel algorithme de décodage des codes de Gabidulin JO - Comptes Rendus. Mathématique PY - 2004 SP - 745 EP - 750 VL - 339 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.10.004/ DO - 10.1016/j.crma.2004.10.004 LA - fr ID - CRMATH_2004__339_10_745_0 ER -
%0 Journal Article %A Loidreau, Pierre %T Sur la reconstruction des polynômes linéaires : un nouvel algorithme de décodage des codes de Gabidulin %J Comptes Rendus. Mathématique %D 2004 %P 745-750 %V 339 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.10.004/ %R 10.1016/j.crma.2004.10.004 %G fr %F CRMATH_2004__339_10_745_0
Loidreau, Pierre. Sur la reconstruction des polynômes linéaires : un nouvel algorithme de décodage des codes de Gabidulin. Comptes Rendus. Mathématique, Tome 339 (2004) no. 10, pp. 745-750. doi : 10.1016/j.crma.2004.10.004. http://www.numdam.org/articles/10.1016/j.crma.2004.10.004/
[1] Algebraic Coding Theory, Aegean Press Park, 1984
[2] E.R. Berlekamp, L. Welch, Error Correction of Algebraic Block Codes, US Patent, Number 4, 633, 470, 1986
[3] Theory of codes with maximal rank distance, Probl. Inf. Transm., Volume 21 (1985), pp. 1-12
[4] A fast matrix decoding algorithm for rank-error correcting codes (Cohen, G.; Litsyn, S.; Lobstein, A.; Zémor, G., eds.), Algebraic Coding, Lecture Notes in Comput. Sci., Springer-Verlag, 1991, pp. 126-133
[5] Ideals over a non-commutative ring and their application in cryptology, Lecture Notes in Comput. Sci., vol. 573, 1991, pp. 482-489
[6] On a special class of polynomials, Trans. Amer. Math. Soc., Volume 35 (1933), pp. 559-584
[7] Contribution to the theory of finite fields, Trans. Amer. Math. Soc., Volume 36 (1934), pp. 243-274
[8] Reducible rank codes and their applications to cryptography, IEEE Trans. Inform. Theory, Volume 49 (2003) no. 12, pp. 3289-3293
[9] Maximum-Rank array codes and their application to crisscross error correction, IEEE Trans. Inform. Theory, Volume 37 (1991) no. 2, pp. 328-336
[10] Decoding Reed–Solomon codes beyond the error-correction diameter, Proceedings of the 35th Annual Allerton Conference on Communication, Control and Computing, 29 septembre – 1er octobre, 1997, pp. 215-224
Cité par Sources :