[Formes normales avec reste exponentiellement petit : application aux orbites homoclines pour la résonance réversible.]
Dans cette Note on explique comment le théorème de formes normales avec reste exponentiellement petit déjà obtenu (Iooss et Lombardi, J. Differential Equations, à paraître) pour les champs de vecteurs analytiques ayant un linéarisé semi-simple peut être utilisé pour montrer l'existence d'orbites homoclines à des solutions périodiques exponentiellement petites pour les champs de vecteurs analytiques, réversibles au voisinage d'une résonance où le linéarisé n'est précisément pas semi simple.
In this Note we explain how the normal form theorem already established (Iooss and Lombardi, J. Differential Equations, in press) for analytic vector fields with a semi-simple linearization enables to prove the existence of homoclinic connections to exponentially small periodic orbits for reversible analytic vector fields admitting a resonance where the linearization is precisely not semi simple.
Accepté le :
Publié le :
@article{CRMATH_2004__339_12_831_0, author = {Iooss, G\'erard and Lombardi, Eric}, title = {Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $ {0}^{2+}\mathrm{i}\omega $ resonance}, journal = {Comptes Rendus. Math\'ematique}, pages = {831--838}, publisher = {Elsevier}, volume = {339}, number = {12}, year = {2004}, doi = {10.1016/j.crma.2004.10.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.10.002/} }
TY - JOUR AU - Iooss, Gérard AU - Lombardi, Eric TI - Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $ {0}^{2+}\mathrm{i}\omega $ resonance JO - Comptes Rendus. Mathématique PY - 2004 SP - 831 EP - 838 VL - 339 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.10.002/ DO - 10.1016/j.crma.2004.10.002 LA - en ID - CRMATH_2004__339_12_831_0 ER -
%0 Journal Article %A Iooss, Gérard %A Lombardi, Eric %T Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $ {0}^{2+}\mathrm{i}\omega $ resonance %J Comptes Rendus. Mathématique %D 2004 %P 831-838 %V 339 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.10.002/ %R 10.1016/j.crma.2004.10.002 %G en %F CRMATH_2004__339_12_831_0
Iooss, Gérard; Lombardi, Eric. Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $ {0}^{2+}\mathrm{i}\omega $ resonance. Comptes Rendus. Mathématique, Tome 339 (2004) no. 12, pp. 831-838. doi : 10.1016/j.crma.2004.10.002. http://www.numdam.org/articles/10.1016/j.crma.2004.10.002/
[1] Topics in Bifurcation Theory and Applications, Adv. Ser. Nonlinear Dynam., vol. 3, World Scientific, 1992
[2] G. Iooss, E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations, in press
[3] Oscillatory Integrals and Phenomena Beyond all Algebraic Orders. With Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., vol. 1741, Springer-Verlag, Berlin, 2000
Cité par Sources :