Dans cette note, nous analysons le comportement en temps long des solutions du système couplé dérive-diffusion-Poisson avec une matrice de diffusion définie positive et soumis à des conditions aux limites de Dirichlet. Ce système modélise le transport de charges dans des dispositifs à semiconducteurs ou à plasmas. En utilisant l'entropie relative développée à l'ordre 2, nous prouvons la convergence exponentielle des solutions vers l'équilibre.
In this note we analyze the long time behavior of a drift-diffusion-Poisson system with a symmetric definite positive diffusion matrix, subject to Dirichlet boundary conditions. This system models the transport of electrons in semiconductor or plasma devices. By using a quadratic relative entropy obtained by keeping the lowest order term of the logarithmic relative entropy, we prove the exponential convergence to the equilibrium.
Accepté le :
Publié le :
@article{CRMATH_2004__339_10_683_0, author = {Ben Abdallah, Naoufel and M\'ehats, Florian and Vauchelet, Nicolas}, title = {A note on the long time behavior for the {drift-diffusion-Poisson} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {339}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.09.025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.09.025/} }
TY - JOUR AU - Ben Abdallah, Naoufel AU - Méhats, Florian AU - Vauchelet, Nicolas TI - A note on the long time behavior for the drift-diffusion-Poisson system JO - Comptes Rendus. Mathématique PY - 2004 SP - 683 EP - 688 VL - 339 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.09.025/ DO - 10.1016/j.crma.2004.09.025 LA - en ID - CRMATH_2004__339_10_683_0 ER -
%0 Journal Article %A Ben Abdallah, Naoufel %A Méhats, Florian %A Vauchelet, Nicolas %T A note on the long time behavior for the drift-diffusion-Poisson system %J Comptes Rendus. Mathématique %D 2004 %P 683-688 %V 339 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.09.025/ %R 10.1016/j.crma.2004.09.025 %G en %F CRMATH_2004__339_10_683_0
Ben Abdallah, Naoufel; Méhats, Florian; Vauchelet, Nicolas. A note on the long time behavior for the drift-diffusion-Poisson system. Comptes Rendus. Mathématique, Tome 339 (2004) no. 10, pp. 683-688. doi : 10.1016/j.crma.2004.09.025. http://www.numdam.org/articles/10.1016/j.crma.2004.09.025/
[1] On generalized Csiszár–Kullback inequalities, Monatsh. Math., Volume 131 (2000) no. 3, pp. 235-253
[2] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 43-100
[3] On large time asymptotics for drift-diffusion-Poisson systems, Transport Theory Statist. Phys., Volume 29 (2000) no. 3–5, pp. 571-581
[4] Weak solutions of the initial-boundary value problem for the Vlasov–Poisson system, Math. Methods Appl. Sci., Volume 17 (1994) no. 6, pp. 451-476
[5] N. Ben Abdallah, F. Méhats, N. Vauchelet, Diffusive transport of partially quantized particle: existence, uniqueness and long time behavior, submitted for publication
[6] Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems, Ann. Henri Poincaré, Volume 1 (2000) no. 3, pp. 461-472
[7] Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling, Transport Theory Statist. Phys., Volume 30 (2001) no. 4–6, pp. 521-536
[8] Stationary states in plasma physics: Maxwellian solutions of the Vlasov–Poisson system, Math. Models Methods Appl. Sci., Volume 1 (1991) no. 2, pp. 183-208
[9] On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech., Volume 65 (1985) no. 2, pp. 101-108
[10] Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi–Dirac statistics, Math. Nachr., Volume 140 (1989), pp. 7-36
[11] The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model, European J. Appl. Math., Volume 12 (2001) no. 4, pp. 497-512
[12] Semiconductor Equations, Springer-Verlag, Vienna, 1990
[13] Boundary value problems for the stationary Vlasov–Maxwell systems, Forum Math., Volume 4 (1992), pp. 499-527
Cité par Sources :
* Support by the European network HYKE, funded by the EC as contract HPRN-CT-2002-00282, is acknowledged.