Probability Theory
Tail of a linear diffusion with Markov switching
[Queue d'une diffusion linéaire à régime markovien.]
Comptes Rendus. Mathématique, Tome 339 (2004) no. 9, pp. 643-646.

Soit Y une diffusion de Ornstein–Uhlenbeck dirigée par un processus Markovien de saut X stationnaire et ergodique : dYt=a(Xt)Ytdt+σ(Xt)dWt, Y0=y0. On connaît des conditions d'ergodicité pour Y. Ici on s'intéresse à la queue de la loi stationnaire de ce modèle. Par des méthodes de discrétisation et de renouvellement, on donne une caractérisation complète des deux seuls cas possibles : queue polynômiale ou existence de moment à tout ordre.

Let Y be a Ornstein–Uhlenbeck diffusion governed by a stationary and ergodic Markov jump process X, i.e. dYt=a(Xt)Ytdt+σ(Xt)dWt, Y0=y0. Ergodicity conditions for Y have been obtained. Here we investigate the tail property of the stationary distribution of this model. A characterization of the only two possible cases is established: light tail or polynomial tail. Our method is based on discretizations and renewal theory.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.09.022
de Saporta, Benoîte 1 ; Yao, Jian-Feng 1

1 IRMAR, université de Rennes I, campus de Beaulieu, 35042 Rennes cedex, France
@article{CRMATH_2004__339_9_643_0,
     author = {de Saporta, Beno{\^\i}te and Yao, Jian-Feng},
     title = {Tail of a linear diffusion with {Markov} switching},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {643--646},
     publisher = {Elsevier},
     volume = {339},
     number = {9},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.09.022/}
}
TY  - JOUR
AU  - de Saporta, Benoîte
AU  - Yao, Jian-Feng
TI  - Tail of a linear diffusion with Markov switching
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 643
EP  - 646
VL  - 339
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.09.022/
DO  - 10.1016/j.crma.2004.09.022
LA  - en
ID  - CRMATH_2004__339_9_643_0
ER  - 
%0 Journal Article
%A de Saporta, Benoîte
%A Yao, Jian-Feng
%T Tail of a linear diffusion with Markov switching
%J Comptes Rendus. Mathématique
%D 2004
%P 643-646
%V 339
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.09.022/
%R 10.1016/j.crma.2004.09.022
%G en
%F CRMATH_2004__339_9_643_0
de Saporta, Benoîte; Yao, Jian-Feng. Tail of a linear diffusion with Markov switching. Comptes Rendus. Mathématique, Tome 339 (2004) no. 9, pp. 643-646. doi : 10.1016/j.crma.2004.09.022. http://www.numdam.org/articles/10.1016/j.crma.2004.09.022/

[1] Basak, G.K.; Bisi, A.; Ghosh, M.K. Stability of random diffusion with linear drift, J. Math. Anal. Appl., Volume 202 (1996), pp. 604-622

[2] Goldie, C.M. Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., Volume 1 (1991), pp. 26-166

[3] Guyon, X.; Iovleff, S.; Yao, J.-F. Linear diffusion with stationary switching regime, ESAIM Probability and Statistics, Volume 8 (2004), pp. 25-35

[4] Hamilton, J.D. Estimation, inference and forecasting of time series subject to change in regime (Maddala, G.; Rao, C.R.; Vinod, D.H., eds.), Handbook of Statistics, vol. 11, 1993, pp. 230-260

[5] Kesten, H. Random difference equations and renewal theory for products of random matrices, Acta Math., Volume 131 (1973), pp. 207-248

[6] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983

[7] de Saporta, B. Renewal theorem for a system of renewal equations, Ann. Inst. H. Poincaré Probab. Statist., Volume 39 (2003), pp. 823-838

Cité par Sources :