Le système de Keller–Segel décrit le mouvement collectif de cellules attirées par une substance chimique et qui sont capables de l'émettre. Dans sa forme la plus simple, il s'agit d'une équation de dérive-diffusion pour la densité de cellules, couplée à une équation elliptique pour la concentration de chémo-attracteur. Il est bien connu qu'en deux dimensions, il y a existence pour des masses petites et explosion pour des masses grandes. Dans cette Note nous complétons ce résultat en donnant une expression de la masse critique dans le cas où le problème estposé dans tout l'espace.
The Keller–Segel system describes the collective motion of cells that are attracted by a chemical substance and are able to emit it. In its simplest form it is a conservative drift-diffusion equation for the cell density coupled to an elliptic equation for the chemo-attractant concentration. It is known that, in two space dimensions, for small initial mass there is global existence of classical solutions and for large initial mass blow-up occurs. In this Note we complete this picture and give an explicit value for the critical mass when the system is set in the whole space.
Accepté le :
Publié le :
@article{CRMATH_2004__339_9_611_0, author = {Dolbeault, Jean and Perthame, Beno{\^\i}t}, title = {Optimal critical mass in the two dimensional {Keller{\textendash}Segel} model in $ {\mathbb{R}}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {611--616}, publisher = {Elsevier}, volume = {339}, number = {9}, year = {2004}, doi = {10.1016/j.crma.2004.08.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.08.011/} }
TY - JOUR AU - Dolbeault, Jean AU - Perthame, Benoît TI - Optimal critical mass in the two dimensional Keller–Segel model in $ {\mathbb{R}}^{2}$ JO - Comptes Rendus. Mathématique PY - 2004 SP - 611 EP - 616 VL - 339 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.08.011/ DO - 10.1016/j.crma.2004.08.011 LA - en ID - CRMATH_2004__339_9_611_0 ER -
%0 Journal Article %A Dolbeault, Jean %A Perthame, Benoît %T Optimal critical mass in the two dimensional Keller–Segel model in $ {\mathbb{R}}^{2}$ %J Comptes Rendus. Mathématique %D 2004 %P 611-616 %V 339 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.08.011/ %R 10.1016/j.crma.2004.08.011 %G en %F CRMATH_2004__339_9_611_0
Dolbeault, Jean; Perthame, Benoît. Optimal critical mass in the two dimensional Keller–Segel model in $ {\mathbb{R}}^{2}$. Comptes Rendus. Mathématique, Tome 339 (2004) no. 9, pp. 611-616. doi : 10.1016/j.crma.2004.08.011. http://www.numdam.org/articles/10.1016/j.crma.2004.08.011/
[1] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math. (2), Volume 138 (1993) no. 1, pp. 213-242
[2] A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math., Volume 66 (1993) no. 1, pp. 131-145
[3] Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on , Geom. Funct. Anal., Volume 2 (1992) no. 1, pp. 90-104
[4] A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003) no. 2, pp. 141-146
[5] Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., Volume 72 (2004), pp. 1-29
[6] Global behaviour of a reaction–diffusion system modelling chemotaxis, Math. Nachr., Volume 195 (1998), pp. 77-114
[7] Finite-time aggregation into a single point in a reaction–diffusion system, Nonlinearity, Volume 10 (1997) no. 6, pp. 1739-1754
[8] On the existence of radially symmetric blow-up solutions for the Keller–Segel model, J. Math. Biol., Volume 44 (2002) no. 5, pp. 463-478
[9] From 1970 until now: the Keller–Segel model in chemotaxis and its consequences, Jahresber. Deutsch. Math.-Verei., Volume 106 (2004), pp. 51-69
[10] On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992) no. 2, pp. 819-824
[11] Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234
[12] Applications of mathematical modelling to biological pattern formation, (Sitges, 2000) (Lecture Notes in Phys.), Volume vol. 567, Springer, Berlin (2001), pp. 205-217
[13] Numerical simulation of chemotactic bacteria aggregation via mixed finite elements, Math. Model. Numer. Anal. (M2AN), Volume 37 (2003) no. 4, pp. 617-630
[14] Mathematical Biology. II, Spatial Models and Biomedical Applications, Interdisciplinary Appl. Math., vol. 18, Springer-Verlag, New York, 2003
[15] Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., Volume 8 (1998) no. 1, pp. 145-156
[16] Random walk with persistence and external bias, B. Math. Biophys., Volume 15 (1953), pp. 311-338
[17] Weak solutions to a parabolic-elliptic system of chemotaxis, J. Func. Anal., Volume 47 (2001), pp. 17-51
[18] Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math., Volume 62 (2002) no. 5, pp. 1581-1633 (electronic)
[19] Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1982/83) no. 4, pp. 567-576
Cité par Sources :