On étudie le développement asymptotique du noyau de Bergman généralisé du Laplacien de Bochner renormalisé associé à une puissance tendant vers l'infini d'un fibré en droites positif sur une variété symplectique compacte.
We study the asymptotic of the generalized Bergman kernels of the renormalized Bochner–Laplacian on high tensor powers of a positive line bundle on compact symplectic manifolds.
Publié le :
@article{CRMATH_2004__339_7_493_0, author = {Ma, Xiaonan and Marinescu, George}, title = {Generalized {Bergman} kernels on symplectic manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {493--498}, publisher = {Elsevier}, volume = {339}, number = {7}, year = {2004}, doi = {10.1016/j.crma.2004.07.016}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.07.016/} }
TY - JOUR AU - Ma, Xiaonan AU - Marinescu, George TI - Generalized Bergman kernels on symplectic manifolds JO - Comptes Rendus. Mathématique PY - 2004 SP - 493 EP - 498 VL - 339 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.07.016/ DO - 10.1016/j.crma.2004.07.016 LA - en ID - CRMATH_2004__339_7_493_0 ER -
%0 Journal Article %A Ma, Xiaonan %A Marinescu, George %T Generalized Bergman kernels on symplectic manifolds %J Comptes Rendus. Mathématique %D 2004 %P 493-498 %V 339 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.07.016/ %R 10.1016/j.crma.2004.07.016 %G en %F CRMATH_2004__339_7_493_0
Ma, Xiaonan; Marinescu, George. Generalized Bergman kernels on symplectic manifolds. Comptes Rendus. Mathématique, Tome 339 (2004) no. 7, pp. 493-498. doi : 10.1016/j.crma.2004.07.016. http://www.numdam.org/articles/10.1016/j.crma.2004.07.016/
[1] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[2] The spectral density function for the Laplacian on high tensor powers of a line bundle, Ann. Global Anal. Geom., Volume 21 (2002), pp. 269-286
[3] The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1-23
[4] On the asymptotic expansion of Bergman kernel, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 193-198 (The full version:) | arXiv
[5] The Laplace operator on the nth tensor power of a line bundle: eigenvalues which are bounded uniformly in n, Asymptotic Anal., Volume 1 (1988), pp. 105-113
[6] On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Am. J. Math., Volume 122 (2000), pp. 235-273
[7] The Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002), pp. 651-664
[8] X. Ma, G. Marinescu, Generalized Bergman kernels on symplectic manifolds, Preprint
[9] X. Wang, Thesis, 2002
[10] Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, Volume 6 (1998), pp. 317-331
Cité par Sources :