Differential Geometry
Generalized Bergman kernels on symplectic manifolds
[Noyaux de Bergman généralisés sur les variétés symplectiques.]
Comptes Rendus. Mathématique, Tome 339 (2004) no. 7, pp. 493-498.

On étudie le développement asymptotique du noyau de Bergman généralisé du Laplacien de Bochner renormalisé associé à une puissance tendant vers l'infini d'un fibré en droites positif sur une variété symplectique compacte.

We study the asymptotic of the generalized Bergman kernels of the renormalized Bochner–Laplacian on high tensor powers of a positive line bundle on compact symplectic manifolds.

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2004.07.016
Ma, Xiaonan 1 ; Marinescu, George 2

1 Centre de mathématiques, UMR 7640 du CNRS, École polytechnique, 91128 Palaiseau cedex, France
2 Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin, Germany
@article{CRMATH_2004__339_7_493_0,
     author = {Ma, Xiaonan and Marinescu, George},
     title = {Generalized {Bergman} kernels on symplectic manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {493--498},
     publisher = {Elsevier},
     volume = {339},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crma.2004.07.016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.07.016/}
}
TY  - JOUR
AU  - Ma, Xiaonan
AU  - Marinescu, George
TI  - Generalized Bergman kernels on symplectic manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 493
EP  - 498
VL  - 339
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.07.016/
DO  - 10.1016/j.crma.2004.07.016
LA  - en
ID  - CRMATH_2004__339_7_493_0
ER  - 
%0 Journal Article
%A Ma, Xiaonan
%A Marinescu, George
%T Generalized Bergman kernels on symplectic manifolds
%J Comptes Rendus. Mathématique
%D 2004
%P 493-498
%V 339
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.07.016/
%R 10.1016/j.crma.2004.07.016
%G en
%F CRMATH_2004__339_7_493_0
Ma, Xiaonan; Marinescu, George. Generalized Bergman kernels on symplectic manifolds. Comptes Rendus. Mathématique, Tome 339 (2004) no. 7, pp. 493-498. doi : 10.1016/j.crma.2004.07.016. http://www.numdam.org/articles/10.1016/j.crma.2004.07.016/

[1] Bismut, J.-M.; Lebeau, G. Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297

[2] Borthwick, D.; Uribe, A. The spectral density function for the Laplacian on high tensor powers of a line bundle, Ann. Global Anal. Geom., Volume 21 (2002), pp. 269-286

[3] Catlin, D. The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1-23

[4] Dai, X.; Liu, K.; Ma, X. On the asymptotic expansion of Bergman kernel, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 193-198 (The full version:) | arXiv

[5] Guillemin, V.; Uribe, A. The Laplace operator on the nth tensor power of a line bundle: eigenvalues which are bounded uniformly in n, Asymptotic Anal., Volume 1 (1988), pp. 105-113

[6] Lu, Z. On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Am. J. Math., Volume 122 (2000), pp. 235-273

[7] Ma, X.; Marinescu, G. The spinc Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002), pp. 651-664

[8] X. Ma, G. Marinescu, Generalized Bergman kernels on symplectic manifolds, Preprint

[9] X. Wang, Thesis, 2002

[10] Zelditch, S. Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, Volume 6 (1998), pp. 317-331

Cité par Sources :