On prouve qu'il existe toujours des pinceaux de Lefschetz pour les variétés fermées 2-calibrées. Ce résultat généralise des constructions similaires pour les variétés symplectiques et de contact.
We prove that for closed 2-calibrated manifolds there always exist Lefschetz pencil structures. This generalizes similar results for symplectic and contact manifolds.
Accepté le :
Publié le :
@article{CRMATH_2004__339_3_215_0, author = {Ibort, Alberto and Marti{\textasciiacute}nez Torres, David}, title = {Lefschetz pencil structures for 2-calibrated manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {215--218}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.018}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.05.018/} }
TY - JOUR AU - Ibort, Alberto AU - Marti´nez Torres, David TI - Lefschetz pencil structures for 2-calibrated manifolds JO - Comptes Rendus. Mathématique PY - 2004 SP - 215 EP - 218 VL - 339 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.05.018/ DO - 10.1016/j.crma.2004.05.018 LA - en ID - CRMATH_2004__339_3_215_0 ER -
%0 Journal Article %A Ibort, Alberto %A Marti´nez Torres, David %T Lefschetz pencil structures for 2-calibrated manifolds %J Comptes Rendus. Mathématique %D 2004 %P 215-218 %V 339 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.05.018/ %R 10.1016/j.crma.2004.05.018 %G en %F CRMATH_2004__339_3_215_0
Ibort, Alberto; Marti´nez Torres, David. Lefschetz pencil structures for 2-calibrated manifolds. Comptes Rendus. Mathématique, Tome 339 (2004) no. 3, pp. 215-218. doi : 10.1016/j.crma.2004.05.018. http://www.numdam.org/articles/10.1016/j.crma.2004.05.018/
[1] Estimated transversality in symplectic geometry and projective maps, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publishing, River Edge, NJ, 2001, pp. 1-30
[2] B. Deroin, Laminations par variétés complexes, Thèse, École Normale Supérieure de Lyon, 2003
[3] Symplectic submanifolds and almost-complex geometry, J. Differential Geom., Volume 44 (1996), pp. 666-705
[4] Lefschetz fibrations in symplectic geometry, J. Differential Geom., Volume 53 (1999) no. 2, pp. 205-236
[5] Laminations par surfaces de Riemann, Dynamique et géométrie complexes (Lyon, 1997), ix, xi, Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. 49-95
[6] Géométrie de contact : de la dimension trois vers les dimensions supérieures, Proceedings of the International Congress of Mathematicians, vol. II, Beijing, 2002, pp. 405-414
[7] Approximately holomorphic geometry and estimated transversality on 2-calibrated manifolds, C. R. Acad. Sci. Paris, Ser. I., Volume 338 (2004) no. 9, pp. 709-712
[8] D. Marti´nez-Torres, Geometries with topological character, Ph.D. Thesis, Universidad Carlos III de Madrid, 2003
[9] Lefschetz type pencils on contact manifolds, Asian J. Math., Volume 6 (2002) no. 2, pp. 277-302
Cité par Sources :