Nous étudions l'espace des applications exponentielles complexes . Nous démontrons que pour chaque composante hyperbolique W, le bord ∂W est connexe, et qu'il y a un isomorphisme biholomorphe qui s'étend en un homéomorphisme de paires . Ceci établit une conjecture de Baker et Rippon, et de Eremenko et Lyubich. D'autre part, nous démontrons une autre conjecture de Eremenko et Lyubich.
We discuss the space of complex exponential maps . We prove that every hyperbolic component W has connected boundary, and there is a conformal isomorphism which extends to a homeomorphism of pairs . This solves a conjecture of Baker and Rippon, and of Eremenko and Lyubich, in the affirmative. We also prove a second conjecture of Eremenko and Lyubich.
Accepté le :
Publié le :
@article{CRMATH_2004__339_3_223_0, author = {Schleicher, Dierk}, title = {Hyperbolic components in exponential parameter space}, journal = {Comptes Rendus. Math\'ematique}, pages = {223--228}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.05.014/} }
TY - JOUR AU - Schleicher, Dierk TI - Hyperbolic components in exponential parameter space JO - Comptes Rendus. Mathématique PY - 2004 SP - 223 EP - 228 VL - 339 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.05.014/ DO - 10.1016/j.crma.2004.05.014 LA - en ID - CRMATH_2004__339_3_223_0 ER -
Schleicher, Dierk. Hyperbolic components in exponential parameter space. Comptes Rendus. Mathématique, Tome 339 (2004) no. 3, pp. 223-228. doi : 10.1016/j.crma.2004.05.014. http://www.numdam.org/articles/10.1016/j.crma.2004.05.014/
[1] Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 9 (1984), pp. 49-77
[2] R. Devaney, L. Goldberg, J. Hubbard, A dynamical approximation to the exponential map by polynomials, Preprint, MSRI Berkeley, 1986
[3] Iterates of entire functions, Soviet Math. Dokl., Volume 30 (1984), pp. 592-594
[4] A. Eremenko, M. Lyubich, Итeрaции цeлыx функций (Iterates of entire functions), Preprint, Physico-Technical Institute of Low-Temperatures Kharkov 6, 1984
[5] Dynamical properties of some classes of entire functions, Ann. Inst. Fourier, Volume 42 (1992) no. 4, pp. 989-1020
[6] M. Förster, D. Schleicher, Parameter rays for the exponential family, in preparation
[7] Classification of escaping exponential maps (ArXiv) | arXiv
[8] E. Lau, D. Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, Preprint 14, Institute of Mathematical Sciences, Stony Brook, 1994
[9] Bifurcations in the space of exponential maps (ArXiv) | arXiv
[10] D. Schleicher, On the dynamics of iterated exponential maps, Habilitationsschrift, Technische Universität München, 1999
[11] Attracting dynamics of exponential maps, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 28 (2003) no. 1, pp. 3-34
Cité par Sources :