Dynamical Systems/Complex Analysis
Hyperbolic components in exponential parameter space
[Composantes hyperboliques dans l'espace des applications exponentielles.]
Comptes Rendus. Mathématique, Tome 339 (2004) no. 3, pp. 223-228.

Nous étudions l'espace des applications exponentielles complexes Eκ:zez+κ. Nous démontrons que pour chaque composante hyperbolique W, le bord ∂W est connexe, et qu'il y a un isomorphisme biholomorphe ΦW:WH qui s'étend en un homéomorphisme de paires ΦW:(W¯,W)(H¯,H). Ceci établit une conjecture de Baker et Rippon, et de Eremenko et Lyubich. D'autre part, nous démontrons une autre conjecture de Eremenko et Lyubich.

We discuss the space of complex exponential maps Eκ:zez+κ. We prove that every hyperbolic component W has connected boundary, and there is a conformal isomorphism ΦW:WH which extends to a homeomorphism of pairs ΦW:(W¯,W)(H¯,H). This solves a conjecture of Baker and Rippon, and of Eremenko and Lyubich, in the affirmative. We also prove a second conjecture of Eremenko and Lyubich.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.05.014
Schleicher, Dierk 1

1 School of Engineering and Science, International University Bremen, Postfach 750 561, 28725 Bremen, Germany
@article{CRMATH_2004__339_3_223_0,
     author = {Schleicher, Dierk},
     title = {Hyperbolic components in exponential parameter space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {223--228},
     publisher = {Elsevier},
     volume = {339},
     number = {3},
     year = {2004},
     doi = {10.1016/j.crma.2004.05.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.05.014/}
}
TY  - JOUR
AU  - Schleicher, Dierk
TI  - Hyperbolic components in exponential parameter space
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 223
EP  - 228
VL  - 339
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.05.014/
DO  - 10.1016/j.crma.2004.05.014
LA  - en
ID  - CRMATH_2004__339_3_223_0
ER  - 
%0 Journal Article
%A Schleicher, Dierk
%T Hyperbolic components in exponential parameter space
%J Comptes Rendus. Mathématique
%D 2004
%P 223-228
%V 339
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.05.014/
%R 10.1016/j.crma.2004.05.014
%G en
%F CRMATH_2004__339_3_223_0
Schleicher, Dierk. Hyperbolic components in exponential parameter space. Comptes Rendus. Mathématique, Tome 339 (2004) no. 3, pp. 223-228. doi : 10.1016/j.crma.2004.05.014. http://www.numdam.org/articles/10.1016/j.crma.2004.05.014/

[1] Baker, I.N.; Rippon, P.J. Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser.  A I Math., Volume 9 (1984), pp. 49-77

[2] R. Devaney, L. Goldberg, J. Hubbard, A dynamical approximation to the exponential map by polynomials, Preprint, MSRI Berkeley, 1986

[3] Eremenko, A.; Lyubich, M. Iterates of entire functions, Soviet Math. Dokl., Volume 30 (1984), pp. 592-594

[4] A. Eremenko, M. Lyubich, Итeрaции цeлыx функций (Iterates of entire functions), Preprint, Physico-Technical Institute of Low-Temperatures Kharkov 6, 1984

[5] Eremenko, A.; Lyubich, M. Dynamical properties of some classes of entire functions, Ann. Inst. Fourier, Volume 42 (1992) no. 4, pp. 989-1020

[6] M. Förster, D. Schleicher, Parameter rays for the exponential family, in preparation

[7] Förster, M.; Rempe, L.; Schleicher, D. Classification of escaping exponential maps (ArXiv) | arXiv

[8] E. Lau, D. Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, Preprint 14, Institute of Mathematical Sciences, Stony Brook, 1994

[9] Rempe, L.; Schleicher, D. Bifurcations in the space of exponential maps (ArXiv) | arXiv

[10] D. Schleicher, On the dynamics of iterated exponential maps, Habilitationsschrift, Technische Universität München, 1999

[11] Schleicher, D. Attracting dynamics of exponential maps, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 28 (2003) no. 1, pp. 3-34

Cité par Sources :