On démontre que les opérateurs pseudo-différentiels de type
Pseudo-differential operators of type
Accepté le :
Publié le :
@article{CRMATH_2004__339_2_115_0, author = {Johnsen, Jon}, title = {Domains of type $ 1\text{,}1$ operators: a case for {Triebel{\textendash}Lizorkin} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--118}, publisher = {Elsevier}, volume = {339}, number = {2}, year = {2004}, doi = {10.1016/j.crma.2004.05.008}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2004.05.008/} }
TY - JOUR AU - Johnsen, Jon TI - Domains of type $ 1\text{,}1$ operators: a case for Triebel–Lizorkin spaces JO - Comptes Rendus. Mathématique PY - 2004 SP - 115 EP - 118 VL - 339 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2004.05.008/ DO - 10.1016/j.crma.2004.05.008 LA - en ID - CRMATH_2004__339_2_115_0 ER -
%0 Journal Article %A Johnsen, Jon %T Domains of type $ 1\text{,}1$ operators: a case for Triebel–Lizorkin spaces %J Comptes Rendus. Mathématique %D 2004 %P 115-118 %V 339 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2004.05.008/ %R 10.1016/j.crma.2004.05.008 %G en %F CRMATH_2004__339_2_115_0
Johnsen, Jon. Domains of type $ 1\text{,}1$ operators: a case for Triebel–Lizorkin spaces. Comptes Rendus. Mathématique, Tome 339 (2004) no. 2, pp. 115-118. doi : 10.1016/j.crma.2004.05.008. https://www.numdam.org/articles/10.1016/j.crma.2004.05.008/
[1] Une algèbre maximale d'opérateurs pseudo-différentiels, Comm. Partial Differential Equations, Volume 13 (1988) no. 9, pp. 1059-1083
[2] Pseudo-differential operators with nonregular symbols, J. Differential Equations, Volume 11 (1972), pp. 436-447
[3] A discrete transform and decomposition of distribution spaces, J. Func. Anal., Volume 93 (1990), pp. 34-170
[4] Pseudo-differential operators of type
[5] Nonregular pseudo-differential operators, Z. Anal. Anwendungen, Volume 15 (1996) no. 1, pp. 109-148
[6] Régularité des solutions des équations aux dérivées partielles non linéaires (d'après J.-M. Bony), Bourbaki Seminar, vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin, 1981, pp. 293-302
[7] Pseudodifferential operators of the “exotic” class
[8] Continuity properties of pseudodifferential operators of type
[9] Theory of Function Spaces, Monographs in Math., vol. 78, Birkhäuser, Basel, 1983
[10] A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 33 (1986), pp. 131-174
Cité par Sources :