Soit une fonction L présente dans la théorie de Langlands–Shahidi. Nous prouvons une minoration de quand , en utilisant les séries d'Eisenstein. Cette méthode s'applique même lorsqu'on ne sait pas que est absolument convergente pour .
Let be an L-function which appears in the Langlands–Shahidi theory. We give a lower bound for when using Eisenstein series. This method is applicable even when is not known to be absolutely convergent for .
Accepté le :
Publié le :
@article{CRMATH_2004__339_2_91_0, author = {Gelbart, Stephen S. and Lapid, Erez M. and Sarnak, Peter}, title = {A new method for lower bounds of {\protect\emph{L}-functions}}, journal = {Comptes Rendus. Math\'ematique}, pages = {91--94}, publisher = {Elsevier}, volume = {339}, number = {2}, year = {2004}, doi = {10.1016/j.crma.2004.04.024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.04.024/} }
TY - JOUR AU - Gelbart, Stephen S. AU - Lapid, Erez M. AU - Sarnak, Peter TI - A new method for lower bounds of L-functions JO - Comptes Rendus. Mathématique PY - 2004 SP - 91 EP - 94 VL - 339 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.04.024/ DO - 10.1016/j.crma.2004.04.024 LA - en ID - CRMATH_2004__339_2_91_0 ER -
%0 Journal Article %A Gelbart, Stephen S. %A Lapid, Erez M. %A Sarnak, Peter %T A new method for lower bounds of L-functions %J Comptes Rendus. Mathématique %D 2004 %P 91-94 %V 339 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.04.024/ %R 10.1016/j.crma.2004.04.024 %G en %F CRMATH_2004__339_2_91_0
Gelbart, Stephen S.; Lapid, Erez M.; Sarnak, Peter. A new method for lower bounds of L-functions. Comptes Rendus. Mathématique, Tome 339 (2004) no. 2, pp. 91-94. doi : 10.1016/j.crma.2004.04.024. http://www.numdam.org/articles/10.1016/j.crma.2004.04.024/
[1] Effective multiplicity one for (Preprint) | arXiv
[2] Boundedness of automorphic L-functions in vertical strips, J. Amer. Math. Soc., Volume 14 (2001) no. 1, pp. 79-107 (electronic)
[3] Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2), Volume 140 (1994) no. 1, pp. 161-181 (With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman)
[4] Siegel zeros and cusp forms, Internat. Math. Res. Notices, Volume 6 (1995), pp. 279-308
[5] Perspectives on the analytic theory of L-functions, Geom. Funct. Anal. (2000), pp. 705-741 (Special Volume, Part II), GAFA 2000 (Tel Aviv, 1999)
[6] A non-vanishing theorem for zeta functions of , Invent. Math., Volume 38 (1976/77) no. 1, pp. 1-16
[7] Functoriality for the exterior square of and the symmetric fourth of , J. Amer. Math. Soc., Volume 16 (2003) no. 1, pp. 139-183 (electronic). With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak
[8] Functorial products for and the symmetric cube for , Ann. of Math. (2), Volume 155 (2002) no. 3, pp. 837-893 (With an appendix by Colin J. Bushnell and Guy Henniart)
[9] Euler products, Yale Mathematical Monographs, vol. 1, Yale University Press, New Haven, CT, 1971 (A James K. Whittemore Lecture in Mathematics given at Yale University, 1967)
[10] E. Lapid, On the spectral expansion of Jacquet's relative trace formula, Preprint
[11] Spectral Decomposition and Eisenstein Series, Cambridge University Press, Cambridge, 1995 (Une paraphrase de l'Écriture [A paraphrase of Scripture])
[12] Analytic proof of the strong multiplicity one theorem, Amer. J. Math., Volume 107 (1985) no. 1, pp. 163-206
[13] On the singularities of residual intertwining operators, Geom. Funct. Anal., Volume 10 (2000) no. 5, pp. 1118-1170
[14] Non-vanishing of L-functions on , Shalikafest (2003)
[15] On certain L-functions, Amer. J. Math., Volume 103 (1981) no. 2, pp. 297-355
[16] On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. (2), Volume 127 (1988) no. 3, pp. 547-584
Cité par Sources :