On donne une estimation expérimentale du taux moyen de croissance de la longueur de la période des progressions géométriques
The averaged growth rate of period's length of the geometrical progressions
Accepté le :
Publié le :
@article{CRMATH_2004__339_1_15_0, author = {Aicardi, Francesca}, title = {Empirical estimates of the average orders of orbits period lengths in {Euler} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {15--20}, publisher = {Elsevier}, volume = {339}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2004.02.021}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2004.02.021/} }
TY - JOUR AU - Aicardi, Francesca TI - Empirical estimates of the average orders of orbits period lengths in Euler groups JO - Comptes Rendus. Mathématique PY - 2004 SP - 15 EP - 20 VL - 339 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2004.02.021/ DO - 10.1016/j.crma.2004.02.021 LA - en ID - CRMATH_2004__339_1_15_0 ER -
%0 Journal Article %A Aicardi, Francesca %T Empirical estimates of the average orders of orbits period lengths in Euler groups %J Comptes Rendus. Mathématique %D 2004 %P 15-20 %V 339 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2004.02.021/ %R 10.1016/j.crma.2004.02.021 %G en %F CRMATH_2004__339_1_15_0
Aicardi, Francesca. Empirical estimates of the average orders of orbits period lengths in Euler groups. Comptes Rendus. Mathématique, Tome 339 (2004) no. 1, pp. 15-20. doi : 10.1016/j.crma.2004.02.021. https://www.numdam.org/articles/10.1016/j.crma.2004.02.021/
[1] Euler Groups and Arithmetics of Geometric Progressions, MCMME, Moscow, 2003 (40 p)
[2] Fermat–Euler dynamical system and statistics of the geometric progressions, Funct. Anal. Appl., Volume 37 (2002) no. 1, pp. 1-20
[3] Ergodic arithmetical properties of the dynamics of geometric progressions, Moscow Math. J. (2003)
[4] Russian Math. Surveys, 58 (2003) no. 4
[5] Weak asymptotics of the solutions numbers of Diophantine problems, Funct. Anal. Appl., Volume 37 (1999) no. 3, pp. 65-66
[6] P.G. Dirichlet, Abhand. Ak. Wiss., Berlin (Math.), 1849, pp. 78–81; Werke, II, pp. 60–64
Cité par Sources :