On donne une estimation expérimentale du taux moyen de croissance de la longueur de la période des progressions géométriques pour n croissant, pour des valeurs différentes de q. Les résultats empiriques, obtenus pour n jusqu'à 106, permettent de conjecturer que l'ordre moyen de la longueur de la période est , où la constante C dépend de q.
The averaged growth rate of period's length of the geometrical progressions for increasing n is empirically estimated for different values of q. The experimental results, obtained for n up to 106, allow us to conjecture that the average order of period's length is , where constant C depends on q.
Accepté le :
Publié le :
@article{CRMATH_2004__339_1_15_0, author = {Aicardi, Francesca}, title = {Empirical estimates of the average orders of orbits period lengths in {Euler} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {15--20}, publisher = {Elsevier}, volume = {339}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2004.02.021}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.02.021/} }
TY - JOUR AU - Aicardi, Francesca TI - Empirical estimates of the average orders of orbits period lengths in Euler groups JO - Comptes Rendus. Mathématique PY - 2004 SP - 15 EP - 20 VL - 339 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.02.021/ DO - 10.1016/j.crma.2004.02.021 LA - en ID - CRMATH_2004__339_1_15_0 ER -
%0 Journal Article %A Aicardi, Francesca %T Empirical estimates of the average orders of orbits period lengths in Euler groups %J Comptes Rendus. Mathématique %D 2004 %P 15-20 %V 339 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.02.021/ %R 10.1016/j.crma.2004.02.021 %G en %F CRMATH_2004__339_1_15_0
Aicardi, Francesca. Empirical estimates of the average orders of orbits period lengths in Euler groups. Comptes Rendus. Mathématique, Tome 339 (2004) no. 1, pp. 15-20. doi : 10.1016/j.crma.2004.02.021. http://www.numdam.org/articles/10.1016/j.crma.2004.02.021/
[1] Euler Groups and Arithmetics of Geometric Progressions, MCMME, Moscow, 2003 (40 p)
[2] Fermat–Euler dynamical system and statistics of the geometric progressions, Funct. Anal. Appl., Volume 37 (2002) no. 1, pp. 1-20
[3] Ergodic arithmetical properties of the dynamics of geometric progressions, Moscow Math. J. (2003)
[4] Russian Math. Surveys, 58 (2003) no. 4
[5] Weak asymptotics of the solutions numbers of Diophantine problems, Funct. Anal. Appl., Volume 37 (1999) no. 3, pp. 65-66
[6] P.G. Dirichlet, Abhand. Ak. Wiss., Berlin (Math.), 1849, pp. 78–81; Werke, II, pp. 60–64
Cité par Sources :