On considère un modèle de réseaux de gènes. Nous démontrons que ces réseaux peuvent engendrer toutes les structures spatio–temporelles et nous obtenons des bornes inférieures du nombre de gènes du réseau qui engendrent une structure prescrite.
We consider a model of gene circuits. We show that these circuits are capable to generate any spatio–temporal patterns. We give lower bounds on the number of genes required to create a given pattern.
Accepté le :
Publié le :
@article{CRMATH_2003__337_11_721_0, author = {Vakulenko, Sergey and Grigoriev, Dmitry}, title = {Complexity of gene circuits, {Pfaffian} functions and the morphogenesis problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {721--724}, publisher = {Elsevier}, volume = {337}, number = {11}, year = {2003}, doi = {10.1016/j.crma.2003.10.021}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.10.021/} }
TY - JOUR AU - Vakulenko, Sergey AU - Grigoriev, Dmitry TI - Complexity of gene circuits, Pfaffian functions and the morphogenesis problem JO - Comptes Rendus. Mathématique PY - 2003 SP - 721 EP - 724 VL - 337 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.10.021/ DO - 10.1016/j.crma.2003.10.021 LA - en ID - CRMATH_2003__337_11_721_0 ER -
%0 Journal Article %A Vakulenko, Sergey %A Grigoriev, Dmitry %T Complexity of gene circuits, Pfaffian functions and the morphogenesis problem %J Comptes Rendus. Mathématique %D 2003 %P 721-724 %V 337 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2003.10.021/ %R 10.1016/j.crma.2003.10.021 %G en %F CRMATH_2003__337_11_721_0
Vakulenko, Sergey; Grigoriev, Dmitry. Complexity of gene circuits, Pfaffian functions and the morphogenesis problem. Comptes Rendus. Mathématique, Tome 337 (2003) no. 11, pp. 721-724. doi : 10.1016/j.crma.2003.10.021. http://www.numdam.org/articles/10.1016/j.crma.2003.10.021/
[1] Universal approximation bounds for superpositions of a sigmoidal functions, IEEE Trans. Inform. Theory, Volume 39 (1993), pp. 930-945
[2] Complexity lower bounds for computation trees with elementary transcendental functions gates, Theoret. Comput. Sci., Volume 157 (1996), pp. 185-214
[3] From molecular to modular cell biology, Nature, Volume 402 (1999), p. C47-C52
[4] Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. USA, Volume 79 (1982), pp. 2554-2558
[5] Fewnomials, Transl. Math. Monographs, 88, American Mathematical Society, 1991
[6] Mathematical Models for Biological Pattern Formation (Maini, P.K.; Othmer, H.G., eds.), IMA Vol. Math. Appl., 121, Springer, 2000
[7] A connectionist model of development, J. Theor. Biol., Volume 152 (1991), pp. 429-453
[8] Mechanism of formation of eve stripes, Mechanisms of Developments, Volume 49 (1995), pp. 133-158
[9] The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, Volume 237 (1952), pp. 37-72
[10] Principles of Development, Oxford University Press, 2002
[11] Dissipative systems generating any structurally stable chaos, Adv. Differential Equations, Volume 5 (2000), pp. 1139-1178
[12] S. Vakulenko, D. Grigoriev, Complexity of patterns generated by genetic circuits and Pfaffian functions, Preprint IHES, 2003
Cité par Sources :