Probability Theory
Diffusion with interactions between two types of particles and Pressureless gas equations
[Diffusion avec interaction entre deux types de particules et système de gaz sans pression avec viscosité]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 11, pp. 731-735.

Nous construisons deux diffusions indépendantes X t a =a+ 0 t u(X s a ,s)ds+νB t a ,X t b =b+ 0 t u(X s b ,s)ds+νB t b , ayant la même viscosité ν≠0 et la même dérive u(x,t)=(ta(x)v1+(1−p)ρtb(x)v2)/(ta(x)+(1−p)ρtb(x)), où ρ t a ,ρ t b sont respectivement les densités de Xta et Xtb. Ici a,b,v 1 ,v 2 R d , et p∈(0,1) sont donnés. Nous montrons que la famille (ρ t (x)=pρ t a (x)+(1-p)ρ t b (x),u(x,t):t0,xR d ) est l'unique solution faible du système de gaz sans pression 𝒮(d,ν) cité dans l'Abstract.

We construct two d-dimensional independent diffusions X t a =a+ 0 t u(X s a ,s)ds+νB t a ,X t b =b+ 0 t u(X s b ,s)ds+νB t b , with the same viscosity ν≠0 and the same drift u(x,t)=(ta(x)v1+(1−p)ρtb(x)v2)/(ta(x)+(1−p)ρtb(x)), where ρta,ρtb are respectively the density of Xta and Xtb. Here a,b,v 1 ,v 2 R d and p∈(0,1) are given. We show that (ρ t (x)=pρ t a (x)+(1-p)ρ t b (x),u(x,t):t0,xR d ) is the unique weak solution of the following pressureless gas system

𝒮(d,ν){ t (ρ)+ j=1 d x j (u j ρ)=ν 2 2Δ(ρ), t (u i ρ)+ j=1 d x j (u i u j ρ)=ν 2 2Δ(u i ρ),1id,
such that ρ t (x)dxpδ a +(1-p)δ b ,u(x,t)ρ t (x)dx pv 1 δ a +(1-p)v 2 δ b as t→0+.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.10.018
Dermoune, Azzouz 1 ; Filali, Siham 1

1 Laboratoire de mathématiques appliquées, équipe de probabilités et statistique, F.R.E. 2222, UFR de mathématiques, USTL, bât. M2, 59655 Villeneuve d'Ascq cédex, France
@article{CRMATH_2003__337_11_731_0,
     author = {Dermoune, Azzouz and Filali, Siham},
     title = {Diffusion with interactions between two types of particles and {Pressureless} gas equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {731--735},
     publisher = {Elsevier},
     volume = {337},
     number = {11},
     year = {2003},
     doi = {10.1016/j.crma.2003.10.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.10.018/}
}
TY  - JOUR
AU  - Dermoune, Azzouz
AU  - Filali, Siham
TI  - Diffusion with interactions between two types of particles and Pressureless gas equations
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 731
EP  - 735
VL  - 337
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.10.018/
DO  - 10.1016/j.crma.2003.10.018
LA  - en
ID  - CRMATH_2003__337_11_731_0
ER  - 
%0 Journal Article
%A Dermoune, Azzouz
%A Filali, Siham
%T Diffusion with interactions between two types of particles and Pressureless gas equations
%J Comptes Rendus. Mathématique
%D 2003
%P 731-735
%V 337
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.10.018/
%R 10.1016/j.crma.2003.10.018
%G en
%F CRMATH_2003__337_11_731_0
Dermoune, Azzouz; Filali, Siham. Diffusion with interactions between two types of particles and Pressureless gas equations. Comptes Rendus. Mathématique, Tome 337 (2003) no. 11, pp. 731-735. doi : 10.1016/j.crma.2003.10.018. http://www.numdam.org/articles/10.1016/j.crma.2003.10.018/

[1] Brenier, Y.; Grenier, E. Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., Volume 35 (1998), pp. 2317-2328

[2] Chow, Y.S.; Teicher, H. Probability Theory, Springer, New York, 1978

[3] Dermoune, A. Propagation of chaos for pressureless gas equations, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 935-940

[4] Dermoune, A. Propagation and conditional propagation of chaos for pressureless gas equations, Probab. Theory Related Fields, Volume 126 (2003), pp. 459-476

[5] Dermoune, A.; Djehiche, B. Pressureless gas equations with viscosity and nonlinear diffusion, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001), pp. 741-750

[6] Dermoune, A.; Djehiche, B. Global solution of pressureless gas equation with viscosity, Physica D, Volume 163 (2002), pp. 184-190

[7] Weinan, E.; Rykov, Y.; Sinai, Y. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion dynamics, Comm. Math. Phys., Volume 177 (1996), pp. 349-380

[8] Sever, M. An existence theorem in the large for zero-pressure gas dynamics, Differential Integral Equations, Volume 14 (2001) no. 9, pp. 1077-1092

[9] Zheng, W. Conditional propagation of chaos and a class of quasilinear PDE's, Ann. Probab., Volume 23 (1995) no. 3, pp. 1389-1413

Cité par Sources :