L'ordre spectral sur induit un ordre partiel sur la variété des polynômes hyperboliques de degré n dont le coefficient dominant est égal à un. On montre que cet ordre est préservé par l'action sur du semigroupe engendré par les opérateurs différentiels du type , On démontre aussi que tout polynôme de est le minimum global de son -orbite et on propose une conjecture selon laquelle un résultat similaire serait valable dans le cas des polynômes à coefficients complexes. On montre enfin que de tous les faisceaux de polynômes dans , seulement ceux qui sont associés aux dérivées logarithmiques satisfont une certaine propriété de minimum local pour l'ordre spectral.
The spectral order on induces a partial ordering on the manifold of monic hyperbolic polynomials of degree n. We show that the semigroup generated by differential operators of the form , , acts on the poset in an order-preserving fashion. We also show that polynomials in are global minima of their respective -orbits and we conjecture that a similar result holds even for complex polynomials. Finally, we show that only those pencils of polynomials in which are of logarithmic derivative type satisfy a certain local minimum property for the spectral order.
Accepté le :
Publié le :
@article{CRMATH_2003__337_11_693_0, author = {Borcea, Julius and Shapiro, Boris}, title = {Hyperbolic polynomials and spectral order}, journal = {Comptes Rendus. Math\'ematique}, pages = {693--698}, publisher = {Elsevier}, volume = {337}, number = {11}, year = {2003}, doi = {10.1016/j.crma.2003.10.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.10.007/} }
TY - JOUR AU - Borcea, Julius AU - Shapiro, Boris TI - Hyperbolic polynomials and spectral order JO - Comptes Rendus. Mathématique PY - 2003 SP - 693 EP - 698 VL - 337 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.10.007/ DO - 10.1016/j.crma.2003.10.007 LA - en ID - CRMATH_2003__337_11_693_0 ER -
%0 Journal Article %A Borcea, Julius %A Shapiro, Boris %T Hyperbolic polynomials and spectral order %J Comptes Rendus. Mathématique %D 2003 %P 693-698 %V 337 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2003.10.007/ %R 10.1016/j.crma.2003.10.007 %G en %F CRMATH_2003__337_11_693_0
Borcea, Julius; Shapiro, Boris. Hyperbolic polynomials and spectral order. Comptes Rendus. Mathématique, Tome 337 (2003) no. 11, pp. 693-698. doi : 10.1016/j.crma.2003.10.007. http://www.numdam.org/articles/10.1016/j.crma.2003.10.007/
[1] An inequality for hyperbolic polynomials, J. Math. Mech., Volume 8 (1959), pp. 957-965
[2] Inequalities, Cambridge University Press, 1988
[3] Inequalities: Theory of Majorization and Its Applications, Math. Sci. Engrg., 143, Academic Press, New York, 1979
[4] Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, 1963
[5] On a theorem of Hardy, Littlewood, Pólya, and Blackwell, Proc. Nat. Acad. Sci. USA, Volume 37 (1951), pp. 826-831
Cité par Sources :