Nous donnons des conditions sous lesquelles les applications d'Itô donnant la solution d'une équation différentielle stochastique sur une variété Riemannienne M entrelace l'opérateur de dérivation d sur l'espace de chemins de M, ainsi que celui de l'espace de Wiener canonique, de . Nous en déduisons une propriété d'unicité de d sur l'espace de chemins. Des résultats sur les dérivées d'ordre supérieur ainsi que sur les dérivées covariantes sont également donnés.
Conditions are given under which the solution map of a stochastic differential equation on a Riemannian manifolds M intertwines the differentiation operator d on the path space of M and that of the canonical Wiener space, . A uniqueness property of d on the path space follows. Results are also given for higher derivatives and covariant derivatives.
Accepté le :
Publié le :
@article{CRMATH_2003__337_11_741_0, author = {Elworthy, K.David and Li, Xue-Mei}, title = {Gross{\textendash}Sobolev spaces on path manifolds: uniqueness and intertwining by {It\^o} maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {741--744}, publisher = {Elsevier}, volume = {337}, number = {11}, year = {2003}, doi = {10.1016/j.crma.2003.10.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.10.004/} }
TY - JOUR AU - Elworthy, K.David AU - Li, Xue-Mei TI - Gross–Sobolev spaces on path manifolds: uniqueness and intertwining by Itô maps JO - Comptes Rendus. Mathématique PY - 2003 SP - 741 EP - 744 VL - 337 IS - 11 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.10.004/ DO - 10.1016/j.crma.2003.10.004 LA - en ID - CRMATH_2003__337_11_741_0 ER -
%0 Journal Article %A Elworthy, K.David %A Li, Xue-Mei %T Gross–Sobolev spaces on path manifolds: uniqueness and intertwining by Itô maps %J Comptes Rendus. Mathématique %D 2003 %P 741-744 %V 337 %N 11 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2003.10.004/ %R 10.1016/j.crma.2003.10.004 %G en %F CRMATH_2003__337_11_741_0
Elworthy, K.David; Li, Xue-Mei. Gross–Sobolev spaces on path manifolds: uniqueness and intertwining by Itô maps. Comptes Rendus. Mathématique, Tome 337 (2003) no. 11, pp. 741-744. doi : 10.1016/j.crma.2003.10.004. http://www.numdam.org/articles/10.1016/j.crma.2003.10.004/
[1] On the irreducibility of certain Dirichlet forms on loop spaces over compact homogeneous spaces, New Trends in Stochastic Analysis, World Scientific, 1997, pp. 3-42
[2] Differential calculus on path and loop spaces. 1. Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995), pp. 97-102
[3] An L2 estimate for Riemannian anticipative stochastic integrals, J. Funct. Anal., Volume 143 (1997) no. 2, pp. 400-414
[4] Renormalized differential geometry on path spaces: structural equations, curvature, J. Funct. Anal., Volume 139 (1996), pp. 119-181
[5] A Cameron–Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal., Volume 100 (1992), pp. 272-377
[6] The non-equivalence of Dirichlet forms on path spaces, Stochastic Analysis on Infinite-Dimensional Spaces, Longman, 1994, pp. 75-87
[7] Concerning the geometry of stochastic differential equations and stochastic flows, New Trends in Stochastic Analysis, World Scientific, 1997
[8] On the Geometry of Diffusion Operators and Stochastic Flows, Lecture Notes in Math., 1720, Springer, 1999
[9] K.D. Elworthy, X.-M. Li, Itô map and the chain rule in Malliavin calculus, in preparation
[10] Special Itô maps and an L2 Hodge theory for one forms on path spaces, Stochastic Processes, Physics and Geometry: New Interplays, I, American Mathematical Society, 2000, pp. 145-162
[11] Sobolev spaces and capacities theory on path spaces over a compact Riemannian manifold, Probab. Theory Related Fields, Volume 125 (2003), pp. 96-134
[12] The Malliavin Calculus and Related Topics, Springer-Verlag, 1995
[13] A quasihomeomorphism on the Wiener space, Proc. Sympos. Pure Math., Volume 57 (1995), pp. 473-486
[14] On a characterization of the Sobolev spaces over an abstract wiener space, J. Math. Kyoto Univ., Volume 25 (1985) no. 4, pp. 717-725
Cité par Sources :
☆ Research partially supported by NSF grant DMS 0072387 and EPSRC GR/NOO 845.