Mathematical Problems in Mechanics
Equivariant cosymmetry and front solutions of the Dubreil–Jacotin–Long equation. Part 1: Boussinesq limit
[Cosymétrie équivariante et solutions « fronts » de l'équation de Dubreil–Jacotin–Long. 1ère partie : la limite Boussinesq]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 11, pp. 753-756.

On considère le problème d'écoulement bidimensionnel en ondes internes progressives dans un fluide parfait, à densité régulière voisine d'une stratification linéaire. On construit des solutions approchées de type « fronts » connectant un écoulement uniforme à un écoulement de cisaillement conjugué du premier mode. On montre que le nombre de branches de type « fronts » dépend essentiellement de l'échelle fine de la stratification de base.

The problem of two-dimensional internal travelling waves in a perfect fluid with smooth density being close to linear stratification is considered. Approximate front solutions connecting uniform flow with a conjugate shear flow of the first mode are constructed. It is demonstrated that the number of the front branches essentially depends on the fine-scale stratification for linear density background.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.09.035
Makarenko, Nikolai 1

1 Lavrentyev Institute of Hydrodynamics, Lavrentyev av., 15, 630090 Novosibirsk, Russia
@article{CRMATH_2003__337_11_753_0,
     author = {Makarenko, Nikolai},
     title = {Equivariant cosymmetry and front solutions of the {Dubreil{\textendash}Jacotin{\textendash}Long} equation. {Part} 1: {Boussinesq} limit},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {753--756},
     publisher = {Elsevier},
     volume = {337},
     number = {11},
     year = {2003},
     doi = {10.1016/j.crma.2003.09.035},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.09.035/}
}
TY  - JOUR
AU  - Makarenko, Nikolai
TI  - Equivariant cosymmetry and front solutions of the Dubreil–Jacotin–Long equation. Part 1: Boussinesq limit
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 753
EP  - 756
VL  - 337
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.09.035/
DO  - 10.1016/j.crma.2003.09.035
LA  - en
ID  - CRMATH_2003__337_11_753_0
ER  - 
%0 Journal Article
%A Makarenko, Nikolai
%T Equivariant cosymmetry and front solutions of the Dubreil–Jacotin–Long equation. Part 1: Boussinesq limit
%J Comptes Rendus. Mathématique
%D 2003
%P 753-756
%V 337
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.09.035/
%R 10.1016/j.crma.2003.09.035
%G en
%F CRMATH_2003__337_11_753_0
Makarenko, Nikolai. Equivariant cosymmetry and front solutions of the Dubreil–Jacotin–Long equation. Part 1: Boussinesq limit. Comptes Rendus. Mathématique, Tome 337 (2003) no. 11, pp. 753-756. doi : 10.1016/j.crma.2003.09.035. http://www.numdam.org/articles/10.1016/j.crma.2003.09.035/

[1] Amick, C.J.; Turner, R.E.L. Small internal waves in two-fluid systems, Arch. Rational Mech. Anal., Volume 108 (1989) no. 2, pp. 111-139

[2] Benjamin, T.B. A unified theory of conjugate flows, Philos. Trans. Roy. Soc. London Ser. A, Volume 269 (1971), pp. 587-643

[3] Benney, D.J.; Ko, D.R.S. The propagation of long large amplitude internal waves, Stud. Appl. Math., Volume 59 (1978), pp. 187-199

[4] James, G. Small amplitude steady internal waves in stratified fluid, Ann. Univ. Ferrara VII, Volume 43 (1997), pp. 65-119

[5] James, G. Internal travelling waves in the limit of a discontinuously stratified fluid, Arch. Rational Mech. Anal., Volume 160 (2001), pp. 41-90

[6] Makarenko, N.I. Smooth bore in a two-layer fluid, Intern. Ser. Numer. Math., Volume 106 (1992), pp. 195-204

[7] Makarenko, N.I. Conjugate flows and smooth bores in a weakly stratified fluid, J. Appl. Mech. Techn. Phys., Volume 40 (1999) no. 2, pp. 249-257

[8] Mielke, A. Homoclinic and heteroclinic solutions in two-phase flow, Proc. IUTAM/ISIMM Symposium on Structure and Dynamics of Nonlinear Waves in Fluids, Adv. Ser. Nonlinear Dynam., 7, World Scientific, 1995, pp. 353-362

Cité par Sources :