Nous démontrons qu'il n'y a pas d'immersion Levi-plate de classe C1 d'un feuilletage par surfaces de Riemann de classe C1 d'une variété compacte de dimension 3 dans le plan projectif complexe, si le feuilletage possède un courant harmonique absolument continu par rapport à la mesure de Lebesgue, avec une densité bornée supérieurement et inférieurement. Ceci découle d'un résultat de rigidité pour les immersions Levi-plates d'un feuilletage ayant la même régularité, à valeurs dans une surface complexe de courbure de Ricci positive ou nulle.
We prove that there is no Levi-flat immersion of class C1 of a Riemann surface foliation of class C1 of a 3-dimensional compact manifold in the complex projective plane, if the foliation carries a harmonic current which is absolutely continuous with respect to Lebesgue measure, with a density bounded from above and below. This comes as a corollary of a rigidity result for Levi-flat immersions of class C1 of Riemann surface foliations having this regularity into complex surfaces of non negative Ricci curvature.
Publié le :
@article{CRMATH_2003__337_12_777_0, author = {Deroin, Bertrand}, title = {Hypersurfaces {Levi-plates} immerg\'ees dans les surfaces complexes de courbure positive}, journal = {Comptes Rendus. Math\'ematique}, pages = {777--780}, publisher = {Elsevier}, volume = {337}, number = {12}, year = {2003}, doi = {10.1016/j.crma.2003.09.016}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.09.016/} }
TY - JOUR AU - Deroin, Bertrand TI - Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive JO - Comptes Rendus. Mathématique PY - 2003 SP - 777 EP - 780 VL - 337 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.09.016/ DO - 10.1016/j.crma.2003.09.016 LA - fr ID - CRMATH_2003__337_12_777_0 ER -
%0 Journal Article %A Deroin, Bertrand %T Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive %J Comptes Rendus. Mathématique %D 2003 %P 777-780 %V 337 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2003.09.016/ %R 10.1016/j.crma.2003.09.016 %G fr %F CRMATH_2003__337_12_777_0
Deroin, Bertrand. Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive. Comptes Rendus. Mathématique, Tome 337 (2003) no. 12, pp. 777-780. doi : 10.1016/j.crma.2003.09.016. http://www.numdam.org/articles/10.1016/j.crma.2003.09.016/
[1] Zur Theorie der Überlagerungflächen, Acta Math., Volume 65 (1935), pp. 157-194
[2] Minimal sets of foliations on complex projective spaces, Inst. Hautes Études Sci. Publ. Math., Volume 68 (1988), pp. 187-203
[3] The harmonic measures of Lucy Garnett, Adv. Math., Volume 176 (2003) no. 2, pp. 187-247
[4] Estimates for the -Neumann problem and nonexistence of Levi-flat hypersurfaces in | arXiv
[5] A Survey of Foliations and Operator Algebras, Proc. Sympos. Pure Math., 38, American Mathematical Society, Providence, RI, 1982 (pp. 521–628)
[6] S. Frankel, Harmonic analysis of surface group representations to Diff(S1) and Milnor type inequalities, Prépublication de l'École Polytechnique, 1125, 1996
[7] Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., Volume 51 (1983) no. 3, pp. 285-311
[8] Laminations par surfaces de Riemann, Dynamiques et géométrie complexe (Lyon, 1997), Panor. Synthèses, 8, Soc. Math. France, Paris, 1999
[9] The intersection product of transverse invariant measures, Indiana Univ. Math. J., Volume 40 (1991), pp. 1169-1183
[10] -regularity for weakly pseudoconvex domains in compact Hermitian symmetric spaces with respect to invariant metrics, Ann. of Math., Volume 156 (2002) no. 2, pp. 595-621
Cité par Sources :