Partial Differential Equations
On the Cauchy problem for the generalized Benjamin–Ono equation with small initial data
[Sur le problème de Cauchy pour l'équation de Benjamin–Ono généralisée avec données initiales petites]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 8, pp. 523-526.

Nous montrons que l'équation de Benjamin–Ono généralisée t u+ x 2 u+ x (u k+1 )=0,k4, est globalement bien posée dans H s (),s>s k , et dans ˙ 2 s k ,1 (),s k =1/2-1/k, pour les données petites. Nous considérons également les cas k=2,3.

We prove global well-posedness results for small initial data in H s (),s>s k , and in ˙ 2 s k ,1 (), sk=1/2−1/k, for the generalized Benjamin–Ono equation t u+ x 2 u+ x (u k+1 )=0,k4. We also consider the cases k=2,3.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.09.012
Molinet, Luc 1 ; Ribaud, Francis 2

1 L.A.G.A., Institut Galilée, Université Paris-Nord, 93430 Villetaneuse, France
2 Université de Marne-La-Vallée, équipe d'analyse et de mathématiques appliquées, 5, bd. Descartes, Champs-sur-Marne, 77454 Marne-La-Vallée cedex 2, France
@article{CRMATH_2003__337_8_523_0,
     author = {Molinet, Luc and Ribaud, Francis},
     title = {On the {Cauchy} problem for the generalized {Benjamin{\textendash}Ono} equation with small initial data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {523--526},
     publisher = {Elsevier},
     volume = {337},
     number = {8},
     year = {2003},
     doi = {10.1016/j.crma.2003.09.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.09.012/}
}
TY  - JOUR
AU  - Molinet, Luc
AU  - Ribaud, Francis
TI  - On the Cauchy problem for the generalized Benjamin–Ono equation with small initial data
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 523
EP  - 526
VL  - 337
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.09.012/
DO  - 10.1016/j.crma.2003.09.012
LA  - en
ID  - CRMATH_2003__337_8_523_0
ER  - 
%0 Journal Article
%A Molinet, Luc
%A Ribaud, Francis
%T On the Cauchy problem for the generalized Benjamin–Ono equation with small initial data
%J Comptes Rendus. Mathématique
%D 2003
%P 523-526
%V 337
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.09.012/
%R 10.1016/j.crma.2003.09.012
%G en
%F CRMATH_2003__337_8_523_0
Molinet, Luc; Ribaud, Francis. On the Cauchy problem for the generalized Benjamin–Ono equation with small initial data. Comptes Rendus. Mathématique, Tome 337 (2003) no. 8, pp. 523-526. doi : 10.1016/j.crma.2003.09.012. http://www.numdam.org/articles/10.1016/j.crma.2003.09.012/

[1] Biagioni, H.A.; Linares, F. Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 3649-3659

[2] Kenig, C.E.; Ponce, G.; Vega, L. On the generalized Benjamin–Ono equations, Trans. Amer. Math. Soc., Volume 342 (1994), pp. 155-172

[3] L. Molinet, F. Ribaud, On the generalized Benjamin–Ono equation with small initial data, Preprint

[4] L. Molinet, F. Ribaud, On the Cauchy problem for the generalized Korteweg–de Vries equation, Comm. Partial Differential Equations, in press

[5] Planchon, F. Self-similar solutions and semi-linear wave equations in Besov spaces, J. Math. Pures Appl., Volume 79 (2000), pp. 809-820

Cité par Sources :