On donne des estimations techniques sur les gradients de fonctions de Green dans des domaines lipschitziens. L'application principale de ces estimations est un théorème central limite optimal de marches aléatoires dans ces domaines.
We give a technical estimate on the gradients of the Green's functions in Lipschitz domains. The main application is a sharp Central Limit Theorem for random walks in these domains.
Accepté le :
Publié le :
@article{CRMATH_2003__337_9_615_0, author = {Varopoulos, Nicholas Th.}, title = {Marches al\'eatoires et th\'eorie du potentiel dans les domaines lipschitziens}, journal = {Comptes Rendus. Math\'ematique}, pages = {615--618}, publisher = {Elsevier}, volume = {337}, number = {9}, year = {2003}, doi = {10.1016/j.crma.2003.08.008}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.08.008/} }
TY - JOUR AU - Varopoulos, Nicholas Th. TI - Marches aléatoires et théorie du potentiel dans les domaines lipschitziens JO - Comptes Rendus. Mathématique PY - 2003 SP - 615 EP - 618 VL - 337 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.08.008/ DO - 10.1016/j.crma.2003.08.008 LA - fr ID - CRMATH_2003__337_9_615_0 ER -
%0 Journal Article %A Varopoulos, Nicholas Th. %T Marches aléatoires et théorie du potentiel dans les domaines lipschitziens %J Comptes Rendus. Mathématique %D 2003 %P 615-618 %V 337 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2003.08.008/ %R 10.1016/j.crma.2003.08.008 %G fr %F CRMATH_2003__337_9_615_0
Varopoulos, Nicholas Th. Marches aléatoires et théorie du potentiel dans les domaines lipschitziens. Comptes Rendus. Mathématique, Tome 337 (2003) no. 9, pp. 615-618. doi : 10.1016/j.crma.2003.08.008. http://www.numdam.org/articles/10.1016/j.crma.2003.08.008/
[1] Asymptotic Analysis for Periodic Structures, North-Holland, 1978
[2] Partial Differential Equations, Wiley, 1964
[3] The Dirichlet problem for the biharmonic equation in a Lipschitz domain, Ann. Inst. Fourier (Grenoble), Volume 36 (1986) no. 3, pp. 109-135
[4] W. Feller, An Introduction to Probability Theory, Vol. 2, Wiley
[5] The regularity of the solution of the Poisson problem in a domain whose boundary is similar to a convex domain, Czechoslovak Math. J., Volume 14 (1964), pp. 386-393
[6] Potential theory in Lipschitz domains, Canad. J. Math., Volume 53 (2001) no. 5, pp. 1057-1120
[7] A spectral approach to the asymptotic problem of diffusion, Differentsial'nye Uravneniya, Volume 25 (1985) no. 1, pp. 44-55
Cité par Sources :