Nous donnons l'équation des surfaces K3 elliptiques possédant une fibre singulière maximale. Puis nous étudions leur réduction modulo p, où p est un nombre premier particulièrement intéressant.
We give the defining equation of complex elliptic K3 surfaces with a maximal singular fibre. Then we study the reduction modulo p at a particularly interesting prime p.
Accepté le :
Publié le :
@article{CRMATH_2003__337_7_461_0, author = {Shioda, Tetsuji}, title = {The elliptic {\protect\emph{K}3} surfaces with a maximal singular fibre}, journal = {Comptes Rendus. Math\'ematique}, pages = {461--466}, publisher = {Elsevier}, volume = {337}, number = {7}, year = {2003}, doi = {10.1016/j.crma.2003.07.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.07.007/} }
TY - JOUR AU - Shioda, Tetsuji TI - The elliptic K3 surfaces with a maximal singular fibre JO - Comptes Rendus. Mathématique PY - 2003 SP - 461 EP - 466 VL - 337 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.07.007/ DO - 10.1016/j.crma.2003.07.007 LA - en ID - CRMATH_2003__337_7_461_0 ER -
Shioda, Tetsuji. The elliptic K3 surfaces with a maximal singular fibre. Comptes Rendus. Mathématique, Tome 337 (2003) no. 7, pp. 461-466. doi : 10.1016/j.crma.2003.07.007. http://www.numdam.org/articles/10.1016/j.crma.2003.07.007/
[1] Supersingular K3 surfaces, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974), pp. 543-568
[2] Les familles stables de courbes elliptiques sur , C. R. Acad. Sci. Paris, Ser. I, Volume 294 (1982), pp. 657-660
[3] On the difference x3−y2, Norske Vid. Selsk. Forh. (Trondheim), Volume 38 (1965), pp. 65-69
[4] On f3(t)−g2(t), Norske Vid. Selsk. Forh. (Trondheim), Volume 38 (1965), pp. 86-87
[5] The Diophantine equation x3−y2=k, Computers in Number Theory, Academic Press, 1971, pp. 173-198
[6] Analogues en caractéristique p d'un théoreme de Mason, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997), pp. 141-144
[7] ‘On singular K3 surfaces, Complex Analysis and Algebraic Geometry, Iwanami Shoten and Cambridge Univ. Press, 1977, pp. 119-136
[8] On extremal elliptic surfaces in characteristic 2 and 3, Hiroshima Math. J., Volume 32 (2002), pp. 179-188
[9] , Ann. of Math. (Collected Works), Volume 77, Iwanami and Princeton University Press, 1963, pp. 563-626 78 (1963) 1–40
[10] Configurations of In fibers on elliptic K3 surfaces, Math. Z., Volume 201 (1989), pp. 339-361
[11] The Jacobian fibrations on some K3 surfaces and their Mordell–Weil groups, Japan. J. Math., Volume 22 (1996), pp. 293-347
[12] The Mordell–Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Pauli, Volume 40 (1991), pp. 83-99
[13] U. Schmickler-Hirzebruch, Elliptische Fläche über mit drei Ausnahmefasern und die Hypergeometrische Differentialgleichung, Diplomarbeit, Univ. Bonn, 1978
[14] I. Shimada, Rational double points on supersingular K3 surfaces, Preprint
[15] On elliptic modular surfaces, J. Math. Soc. Japan, Volume 24 (1972), pp. 20-59
[16] On the Mordell–Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990), pp. 211-240
[17] Integral points and Mordell–Weil lattices, A Panorama in Number Theory or The View from Baker's Garden, Cambridge University Press, 2002, pp. 185-193
[18] T. Shioda, Elliptic surfaces and Davenport–Stothers triples, in preparation
[19] Polynomial identities and Hauptmoduln, Quart. J. Math. Oxford (2), Volume 32 (1981), pp. 349-370
[20] Algorithm for determining the type of a singular fiber in an elliptic pencil, SLN, Volume 476 (1975), pp. 33-52
Cité par Sources :