On présente plusieurs résultats concernant le comportement des solutions positives du problème de Dirichlet Lu=f(u) sur un ouvert
We study the behavior of positive solutions of the Dirichlet problem Lu=f(u) in
Publié le :
@article{CRMATH_2003__337_7_445_0, author = {Coville, J\'er\^ome}, title = {Monotonicity in integrodifferential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--450}, publisher = {Elsevier}, volume = {337}, number = {7}, year = {2003}, doi = {10.1016/j.crma.2003.07.005}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2003.07.005/} }
TY - JOUR AU - Coville, Jérôme TI - Monotonicity in integrodifferential equations JO - Comptes Rendus. Mathématique PY - 2003 SP - 445 EP - 450 VL - 337 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2003.07.005/ DO - 10.1016/j.crma.2003.07.005 LA - en ID - CRMATH_2003__337_7_445_0 ER -
Coville, Jérôme. Monotonicity in integrodifferential equations. Comptes Rendus. Mathématique, Tome 337 (2003) no. 7, pp. 445-450. doi : 10.1016/j.crma.2003.07.005. https://www.numdam.org/articles/10.1016/j.crma.2003.07.005/
[1] Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002) no. 8, pp. 949-1032
[2] On the method of moving planes and the sliding method, Bol. Soc. Brasil. Math., Volume 22 (1991) no. 1, pp. 1-37
[3] Travelling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., Volume 16 (1985) no. 6, pp. 1207-1242
[4] J. Coville, On monotone behavior of solution of nonlocal reaction–diffusion equation, Publication du laboratoire Jacques-Louis Lions R03006
[5] J. Coville, L. Dupaigne, Min–Max formula for the minimal speed of an integrodifferential reaction–diffusion equation, Preprint
[6] Monotonicity one-dimensional symmetry for the solutions of Δu+f(u)=0 in
[7] Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath., 28, Springer-Verlag, Berlin, 1979
[8] The approach of solutions of nonlinear diffusion equation to travelling front solutions, Arch. Rational Mech. Anal., Volume 65 (1977), pp. 335-361
Cité par Sources :