On présente plusieurs résultats concernant le comportement des solutions positives du problème de Dirichlet Lu=f(u) sur un ouvert , où avec a pouvant être égale à −∞. Ici, L est un opérateur vérifiant un principe du maximum fort ainsi qu'une propriété de décroissance par translation. Nos résultats couvrent le cas d'opérateurs intégraux. On établit le caractère monotone des solutions pour certaines classes de nonlinéarités f.
We study the behavior of positive solutions of the Dirichlet problem Lu=f(u) in with , where a can be −∞, and L is an abstract operator which is non-increasing under translation and satisfies a strong maximum principle property. This covers the case of many integral operators. Under some assumptions on f (e.g., bistable, monostable), we show that any solution exhibits a monotone behavior.
Publié le :
@article{CRMATH_2003__337_7_445_0, author = {Coville, J\'er\^ome}, title = {Monotonicity in integrodifferential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--450}, publisher = {Elsevier}, volume = {337}, number = {7}, year = {2003}, doi = {10.1016/j.crma.2003.07.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.07.005/} }
TY - JOUR AU - Coville, Jérôme TI - Monotonicity in integrodifferential equations JO - Comptes Rendus. Mathématique PY - 2003 SP - 445 EP - 450 VL - 337 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.07.005/ DO - 10.1016/j.crma.2003.07.005 LA - en ID - CRMATH_2003__337_7_445_0 ER -
Coville, Jérôme. Monotonicity in integrodifferential equations. Comptes Rendus. Mathématique, Tome 337 (2003) no. 7, pp. 445-450. doi : 10.1016/j.crma.2003.07.005. http://www.numdam.org/articles/10.1016/j.crma.2003.07.005/
[1] Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002) no. 8, pp. 949-1032
[2] On the method of moving planes and the sliding method, Bol. Soc. Brasil. Math., Volume 22 (1991) no. 1, pp. 1-37
[3] Travelling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., Volume 16 (1985) no. 6, pp. 1207-1242
[4] J. Coville, On monotone behavior of solution of nonlocal reaction–diffusion equation, Publication du laboratoire Jacques-Louis Lions R03006
[5] J. Coville, L. Dupaigne, Min–Max formula for the minimal speed of an integrodifferential reaction–diffusion equation, Preprint
[6] Monotonicity one-dimensional symmetry for the solutions of Δu+f(u)=0 in with possibly discontinuous nonlinearity, Adv. Math. Sci. Appl., Volume 11 (2001) no. 2, pp. 811-834
[7] Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath., 28, Springer-Verlag, Berlin, 1979
[8] The approach of solutions of nonlinear diffusion equation to travelling front solutions, Arch. Rational Mech. Anal., Volume 65 (1977), pp. 335-361
Cité par Sources :