Functional Analysis
The Banach–Saks index of rearrangement invariant spaces on [0,1]
[L'indice de Banach–Saks des espaces invariants par réarrangement sur [0,1]]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 6, pp. 397-401.

L'ensemble des espaces invariants par réarrangement sur [0,1] qui possèdent la propriété de p-Banach–Saks admet un unique élément maximal pour p∈(1,2]. Pour p=2 c'est L2 ; pour p∈(1,2) c'est L0p,∞. Nous calculons l'indice de Banach–Saks de la famille des espaces de Lorentz L p,q ,1<p<, 1⩽q⩽∞, et des espaces de Lorentz–Zygmund L(p,α), 1p<,α, généralisant ainsi les résultats classiques de Banach–Saks et Kadec–Pelczynski pour les espaces Lp. Nous montrons que l'ensemble des espaces invariants par réarrangement qui ont p∈(1,2] indice de Banach–Saks n'est pas stable par interpolation réelle ou complexe.

The set of all rearrangement invariant function spaces on [0,1] having the p-Banach–Saks property has a unique maximal element for all p∈(1,2]. For p=2 this is L2, for p∈(1,2) this is Lp,∞0. We compute the Banach–Saks index for the families of Lorentz spaces L p,q ,1<p<, 1⩽q⩽∞, and Lorentz–Zygmund spaces L(p,α), 1p<,α, extending the classical results of Banach–Saks and Kadec–Pelczynski for Lp-spaces. Our results show that the set of rearrangement invariant spaces with Banach–Saks index p∈(1,2] is not stable with respect to the real and complex interpoltaion methods.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.07.003
Semenov, E.M. 1 ; Sukochev, Fyodor A. 2

1 Department of Mathematics, Voronezh State University, Universitetskaya pl. 1, Voronezh 394693, Russia
2 School of Informatics and Engineering, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
@article{CRMATH_2003__337_6_397_0,
     author = {Semenov, E.M. and Sukochev, Fyodor A.},
     title = {The {Banach{\textendash}Saks} index of rearrangement invariant spaces on [0,1]},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {397--401},
     publisher = {Elsevier},
     volume = {337},
     number = {6},
     year = {2003},
     doi = {10.1016/j.crma.2003.07.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.07.003/}
}
TY  - JOUR
AU  - Semenov, E.M.
AU  - Sukochev, Fyodor A.
TI  - The Banach–Saks index of rearrangement invariant spaces on [0,1]
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 397
EP  - 401
VL  - 337
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.07.003/
DO  - 10.1016/j.crma.2003.07.003
LA  - en
ID  - CRMATH_2003__337_6_397_0
ER  - 
%0 Journal Article
%A Semenov, E.M.
%A Sukochev, Fyodor A.
%T The Banach–Saks index of rearrangement invariant spaces on [0,1]
%J Comptes Rendus. Mathématique
%D 2003
%P 397-401
%V 337
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.07.003/
%R 10.1016/j.crma.2003.07.003
%G en
%F CRMATH_2003__337_6_397_0
Semenov, E.M.; Sukochev, Fyodor A. The Banach–Saks index of rearrangement invariant spaces on [0,1]. Comptes Rendus. Mathématique, Tome 337 (2003) no. 6, pp. 397-401. doi : 10.1016/j.crma.2003.07.003. http://www.numdam.org/articles/10.1016/j.crma.2003.07.003/

[1] Baernstein, A. On reflexivity and summability, Studia Math., Volume 17 (1972), pp. 91-94

[2] Banach, S.; Saks, S. Sur la covergence forte mans les champs Lp, Studia Math., Volume 2 (1930), pp. 51-57

[3] P.G. Dodds, E.M. Semenov, F.A. Sukochev, The Banach–Saks property in rearrangement invariant spaces, in press

[4] Kadec, M.I.; Pelczynski, A. Bases, lacunary sequences and complemented subspaces in the spaces Lp, Studia Math., Volume 21 (1962), pp. 161-176

[5] Krein, S.G.; Petunin, Ju.I.; Semenov, E.M. Interpolation of Linear Operators, Transl. Math. Monographs, 54, American Mathematical Society, 1982

[6] Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces I. Sequences Spaces, Springer-Verlag, 1977

[7] Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces II. Function Spaces, Springer-Verlag, 1979

[8] E.M. Semenov, F.A. Sukochev, Banach–Saks index, in press

[9] Rakov, S.A. Banach–Saks exponent of certain Banach spaces of sequences, Math. Notes, Volume 32 (1982), pp. 613-625

Cité par Sources :