L'ensemble des espaces invariants par réarrangement sur [0,1] qui possèdent la propriété de p-Banach–Saks admet un unique élément maximal pour p∈(1,2]. Pour p=2 c'est L2 ; pour p∈(1,2) c'est L0p,∞. Nous calculons l'indice de Banach–Saks de la famille des espaces de Lorentz , 1⩽q⩽∞, et des espaces de Lorentz–Zygmund L(p,α), , généralisant ainsi les résultats classiques de Banach–Saks et Kadec–Pelczynski pour les espaces Lp. Nous montrons que l'ensemble des espaces invariants par réarrangement qui ont p∈(1,2] indice de Banach–Saks n'est pas stable par interpolation réelle ou complexe.
The set of all rearrangement invariant function spaces on [0,1] having the p-Banach–Saks property has a unique maximal element for all p∈(1,2]. For p=2 this is L2, for p∈(1,2) this is Lp,∞0. We compute the Banach–Saks index for the families of Lorentz spaces , 1⩽q⩽∞, and Lorentz–Zygmund spaces L(p,α), , extending the classical results of Banach–Saks and Kadec–Pelczynski for Lp-spaces. Our results show that the set of rearrangement invariant spaces with Banach–Saks index p∈(1,2] is not stable with respect to the real and complex interpoltaion methods.
Accepté le :
Publié le :
@article{CRMATH_2003__337_6_397_0, author = {Semenov, E.M. and Sukochev, Fyodor A.}, title = {The {Banach{\textendash}Saks} index of rearrangement invariant spaces on [0,1]}, journal = {Comptes Rendus. Math\'ematique}, pages = {397--401}, publisher = {Elsevier}, volume = {337}, number = {6}, year = {2003}, doi = {10.1016/j.crma.2003.07.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.07.003/} }
TY - JOUR AU - Semenov, E.M. AU - Sukochev, Fyodor A. TI - The Banach–Saks index of rearrangement invariant spaces on [0,1] JO - Comptes Rendus. Mathématique PY - 2003 SP - 397 EP - 401 VL - 337 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.07.003/ DO - 10.1016/j.crma.2003.07.003 LA - en ID - CRMATH_2003__337_6_397_0 ER -
%0 Journal Article %A Semenov, E.M. %A Sukochev, Fyodor A. %T The Banach–Saks index of rearrangement invariant spaces on [0,1] %J Comptes Rendus. Mathématique %D 2003 %P 397-401 %V 337 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2003.07.003/ %R 10.1016/j.crma.2003.07.003 %G en %F CRMATH_2003__337_6_397_0
Semenov, E.M.; Sukochev, Fyodor A. The Banach–Saks index of rearrangement invariant spaces on [0,1]. Comptes Rendus. Mathématique, Tome 337 (2003) no. 6, pp. 397-401. doi : 10.1016/j.crma.2003.07.003. http://www.numdam.org/articles/10.1016/j.crma.2003.07.003/
[1] On reflexivity and summability, Studia Math., Volume 17 (1972), pp. 91-94
[2] Sur la covergence forte mans les champs Lp, Studia Math., Volume 2 (1930), pp. 51-57
[3] P.G. Dodds, E.M. Semenov, F.A. Sukochev, The Banach–Saks property in rearrangement invariant spaces, in press
[4] Bases, lacunary sequences and complemented subspaces in the spaces Lp, Studia Math., Volume 21 (1962), pp. 161-176
[5] Interpolation of Linear Operators, Transl. Math. Monographs, 54, American Mathematical Society, 1982
[6] Classical Banach Spaces I. Sequences Spaces, Springer-Verlag, 1977
[7] Classical Banach Spaces II. Function Spaces, Springer-Verlag, 1979
[8] E.M. Semenov, F.A. Sukochev, Banach–Saks index, in press
[9] Banach–Saks exponent of certain Banach spaces of sequences, Math. Notes, Volume 32 (1982), pp. 613-625
Cité par Sources :