@article{ASENS_2006_4_39_1_177_0, author = {Py, Pierre}, title = {Quasi-morphismes et invariant de {Calabi}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {177--195}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 39}, number = {1}, year = {2006}, doi = {10.1016/j.ansens.2005.11.003}, mrnumber = {2224660}, zbl = {1098.57014}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2005.11.003/} }
TY - JOUR AU - Py, Pierre TI - Quasi-morphismes et invariant de Calabi JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 177 EP - 195 VL - 39 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2005.11.003/ DO - 10.1016/j.ansens.2005.11.003 LA - fr ID - ASENS_2006_4_39_1_177_0 ER -
%0 Journal Article %A Py, Pierre %T Quasi-morphismes et invariant de Calabi %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 177-195 %V 39 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2005.11.003/ %R 10.1016/j.ansens.2005.11.003 %G fr %F ASENS_2006_4_39_1_177_0
Py, Pierre. Quasi-morphismes et invariant de Calabi. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 1, pp. 177-195. doi : 10.1016/j.ansens.2005.11.003. http://www.numdam.org/articles/10.1016/j.ansens.2005.11.003/
[1] On a characteristic class entering into conditions of quantization, Funct. Anal. Appl. 1 (1967) 1-14. | MR | Zbl
,[2] The asymptotic Hopf invariant and its applications, Sel. Math. Sov. 5 (1986) 327-345. | MR | Zbl
,[3] The group of diffeomorphisms preserving a regular contact form, in: Topology and algebra, Proc. Colloq., Eidgenoss. Tech. Hochsch., Zurich, 1977, Monograph. Enseign. Math., vol. 26, Univ. Genève, 1978, pp. 47-53. | MR | Zbl
,[4] Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (2) (1978) 174-227. | MR | Zbl
,[5] Cocycles d'Euler et de Maslov, Math. Ann. 294 (2) (1992) 235-265. | MR | Zbl
, ,[6] Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991) 109-150. | MR | Zbl
,[7] Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math. 6 (2004) 793-802. | MR | Zbl
, , ,[8] Some remarks on bounded cohomology, in: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, NY, 1978, Ann. of Math. Stud., Princeton University Press, Princeton, NJ, 1981, pp. 53-63. | MR | Zbl
,[9] On the group of automorphisms of a symplectic manifold, in: Problems in Analysis, Symposium in honour of S. Bochner, Princeton University Press, Princeton, NJ, 1970, pp. 1-26. | MR | Zbl
,[10] Bounds for the characteristic numbers of flat bundles, in: Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 109-119. | MR | Zbl
,[11] A fibre bundle description of Teichmüller theory, J. Differential Geom. 3 (1969) 19-43. | MR | Zbl
, ,[12] Commutator length of symplectomorphisms, Comment. Math. Helv. 79 (2004) 58-104. | MR | Zbl
,[13] Calabi quasimorphism and quantum homology, Int. Math. Res. Not. 30 (2003) 1635-1676. | MR | Zbl
, ,[14] Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynamical Systems 24 (5) (2004) 1591-1671. | MR | Zbl
, ,[15] Groups acting on the circle, Enseign. Math. (2) 47 (2001) 329-407. | MR | Zbl
,[16] Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307-347. | MR | Zbl
,[17] Sur la cohomologie réelle des groupes de Lie simples réels, Ann. Sci. École Norm. Sup. 11 (1978) 277-292. | Numdam | MR | Zbl
, ,[18] Subadditive Processes, Lecture Notes in Math., vol. 539, Springer, Berlin, 1976. | MR | Zbl
,[19] Introduction to Symplectic Topology, Oxford Mathematical Monographs, Clarendon Press/Oxford University Press, New York, 1998. | MR | Zbl
, ,[20] A multiplicative ergodic theorem, Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968) 197-231. | MR | Zbl
,[21] Quasi-morphisme de Calabi sur les surfaces de genre supérieur, C. R. Math. Acad. Sci. Paris 341 (1) (2005) 29-34. | MR | Zbl
,[22] Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, C. R. Math. Acad. Sci. Paris 222 (1946) 847-849. | MR | Zbl
,[23] Rotation numbers for diffeomorphisms and flows, Ann. Inst. H. Poincaré Phys. Théor. 42 (1) (1985) 109-115. | Numdam | MR | Zbl
,[24] Asymptotic cycles, Ann. of Math. (2) 66 (1957) 270-284. | MR | Zbl
,Cité par Sources :