@article{ASENS_2005_4_38_3_365_0, author = {Otwinowska, Ania and Saito, Morihiko}, title = {Monodromy of a family of hypersurfaces containing a given subvariety}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {365--386}, publisher = {Elsevier}, volume = {Ser. 4, 38}, number = {3}, year = {2005}, doi = {10.1016/j.ansens.2005.03.003}, mrnumber = {2166338}, zbl = {1086.14010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2005.03.003/} }
TY - JOUR AU - Otwinowska, Ania AU - Saito, Morihiko TI - Monodromy of a family of hypersurfaces containing a given subvariety JO - Annales scientifiques de l'École Normale Supérieure PY - 2005 SP - 365 EP - 386 VL - 38 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2005.03.003/ DO - 10.1016/j.ansens.2005.03.003 LA - en ID - ASENS_2005_4_38_3_365_0 ER -
%0 Journal Article %A Otwinowska, Ania %A Saito, Morihiko %T Monodromy of a family of hypersurfaces containing a given subvariety %J Annales scientifiques de l'École Normale Supérieure %D 2005 %P 365-386 %V 38 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2005.03.003/ %R 10.1016/j.ansens.2005.03.003 %G en %F ASENS_2005_4_38_3_365_0
Otwinowska, Ania; Saito, Morihiko. Monodromy of a family of hypersurfaces containing a given subvariety. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 38 (2005) no. 3, pp. 365-386. doi : 10.1016/j.ansens.2005.03.003. http://www.numdam.org/articles/10.1016/j.ansens.2005.03.003/
[1] Faisceaux pervers, Astérisque, vol. 100, Soc. Math. France, Paris, 1982. | MR | Zbl
, , ,[2] Extensions of mixed Hodge structures, in: Journées de géométrie algébrique d'Angers 1979, Sijthoff-Noordhoff Alphen a/d Rijn, 1980, pp. 107-128. | MR | Zbl
,[3] Degeneration of Kähler manifolds, Duke Math. J. 44 (1977) 215-290. | MR | Zbl
,[4] Théorie de Hodge I, Actes Congrès Intern. Math. 1 (1970) 425-430. | MR | Zbl
,[5] Le formalisme des cycles évanescents, in: SGA7 XIII and XIV, Lecture Notes in Math., vol. 340, Springer, Berlin, 1973, pp. 82-115, and 116-164. | Zbl
,[6] La formule de Picard-Lefschetz, in: SGA7 XV, Lecture Notes in Math., vol. 340, Springer, Berlin, 1973, pp. 165-197. | Zbl
,[7] Sheaves in Topology, Universitext, Springer, Berlin, 2004. | MR | Zbl
,[8] Monodromy at infinity and the weights of cohomology, Compositio Math. 138 (2003) 55-71. | MR | Zbl
, ,[9] Commutative Algebra with a View Toward Algebraic Geometry, Springer, New York, 1995. | MR | Zbl
,[10] On the Noether-Lefschetz theorem and some remarks on codimension two cycles, Math. Ann. 271 (1985) 31-51. | MR | Zbl
, ,[11] Autour du théorème de monodromie locale, Astérisque 223 (1994) 9-57. | Numdam | MR | Zbl
,[12] Étude cohomologique des pinceaux de Lefschetz, in: Lecture Notes in Math., vol. 340, Springer, Berlin, 1973, pp. 254-327. | Zbl
,[13] Bertini theorems for hypersurface sections containing a subscheme, Comm. Algebra 7 (1979) 775-790. | MR | Zbl
, ,[14] L'analysis situs et la géométrie algébrique, Gauthier-Villars, Paris, 1924. | JFM
,[15] A Survey of the Hodge Conjecture, Monograph Series, vol. 10, American Mathematical Society, Providence RI, 1999. | MR | Zbl
,[16] Noether-Lefschetz Theory and the Picard Group of Projective Surfaces, Mem. Amer. Math. Soc., vol. 89, American Mathematical Society, Providence, RI, 1991. | MR | Zbl
,[17] Singular Points of Complex Hypersurfaces, Ann. of Math. Stud., vol. 61, Princeton University Press, Princeton, NJ, 1968. | MR | Zbl
,[18] Composantes de petite codimension du lieu de Noether-Lefschetz; un argument en faveur de la conjecture de Hodge pour les hypersurfaces, J. Algebraic Geom. 12 (2003) 307-320. | MR | Zbl
,[19] Otwinowska A., Monodromie d'une famille d'hypersurfaces, Preprint.
[20] Sur les variétés de Hodge des hypersurfaces, math.AG/0401092.
,[21] Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ. 24 (1988) 849-995. | MR | Zbl
,[22] Mixed Hodge modules, Publ. RIMS, Kyoto Univ. 26 (1990) 221-333. | MR | Zbl
,[23] Admissible normal functions, J. Algebra Geom. 5 (1996) 235-276. | MR | Zbl
,[24] Limits of Hodge structures, Invent. Math. 31 (1975/76) 229-257. | MR | Zbl
,[25] Variation of mixed Hodge structure I, Invent. Math. 80 (1985) 489-542. | MR | Zbl
, ,[26] Catégories dérivées, in: SGA 4 1/2, Lecture Notes in Math., vol. 569, Springer, Berlin, 1977, pp. 262-311. | MR | Zbl
,[27] Verdier J.-L., Dualité dans la cohomologie des espaces localement compacts, Sém. Bourbaki (1965/66), Exp. no 300 Collection hors série de la SMF 9 (1995) 337-349. | Numdam | MR | Zbl
[28] Hodge Theory and Complex Algebraic Geometry, II, Cambridge University Press, Cambridge, 2003. | MR | Zbl
,[29] Hodge theory with degenerating coefficients, -cohomology in the Poincaré metric, Ann. of Math. 109 (1979) 415-476. | MR | Zbl
,Cité par Sources :