@article{ASENS_2004_4_37_4_533_0, author = {Blondel, Corinne}, title = {$Sp(2N)$-covers for self-contragredient supercuspidal representations of $GL(N)$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {533--558}, publisher = {Elsevier}, volume = {Ser. 4, 37}, number = {4}, year = {2004}, doi = {10.1016/j.ansens.2003.10.003}, zbl = {1063.22016}, mrnumber = {2097892}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2003.10.003/} }
TY - JOUR AU - Blondel, Corinne TI - $Sp(2N)$-covers for self-contragredient supercuspidal representations of $GL(N)$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2004 SP - 533 EP - 558 VL - 37 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2003.10.003/ DO - 10.1016/j.ansens.2003.10.003 LA - en ID - ASENS_2004_4_37_4_533_0 ER -
%0 Journal Article %A Blondel, Corinne %T $Sp(2N)$-covers for self-contragredient supercuspidal representations of $GL(N)$ %J Annales scientifiques de l'École Normale Supérieure %D 2004 %P 533-558 %V 37 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2003.10.003/ %R 10.1016/j.ansens.2003.10.003 %G en %F ASENS_2004_4_37_4_533_0
Blondel, Corinne. $Sp(2N)$-covers for self-contragredient supercuspidal representations of $GL(N)$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 4, pp. 533-558. doi : 10.1016/j.ansens.2003.10.003. http://www.numdam.org/articles/10.1016/j.ansens.2003.10.003/
[1] Self-contragredient supercuspidal representations of , Proc. Amer. Math. Soc. (8) 125 (1997) 2471-2479. | MR | Zbl
,[2] Types induits des paraboliques maximaux de et , Ann. Inst. Fourier (6) 49 (1999) 1805-1851. | Numdam | MR | Zbl
, ,[3] Algèbres de Hecke et séries principales généralisées de , Proc. London Math. Soc. (3) 85 (2002) 659-685. | MR | Zbl
, ,[4] Critère d'injectivité pour l'application de Jacquet, C. R. Acad. Sci. Paris, Ser. I 325 (1997) 1149-1152. | MR | Zbl
,[5] Une méthode de construction de types induits et son application à , J. Algebra 213 (1999) 231-271. | MR | Zbl
,[6] Quelques propriétés des paires couvrantes, Math. Annalen (2004), (in press). | MR | Zbl
,[7] Hereditary orders, Gauss sums and supercuspidal representations of , J. Reine Angew. Math. 375/376 (1987) 184-210. | MR | Zbl
,[8] Representations of reductive p-adic groups: localization of Hecke algebras and applications, J. London Math. Soc. (2) 63 (2001) 364-386. | MR | Zbl
,[9] Local tame lifting for I: simple characters, Publ. Math. IHÉS 83 (1996) 105-233. | Numdam | MR | Zbl
, ,[10] Local tame lifting for II: wildly ramified supercuspidals, Astérisque 254 (1999). | Numdam | MR | Zbl
, ,[11] The Admissible Dual of via Compact Open Subgroups, Ann. of Math. Stud., vol. 129, Princeton University Press, 1993. | MR | Zbl
, ,[12] Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. 77 (1998) 582-634. | MR | Zbl
, ,[13] Representations of the group where K is a local field, in: Lie Groups and their Representations (Proc. Summer School of the Bolya-Janos Math. Soc., Budapest, 1971), Halsted, New York, 1975. | MR | Zbl
, ,[14] Hecke algebras of classical groups over p-adic fields and supercuspidal representations, Amer. J. Math. 121 (1999) 967-1029. | MR | Zbl
,[15] Mackey's theorem for nonunitary representations, Proc. Amer. Math. Soc. 64 (1977) 173-175. | MR | Zbl
,[16] Correspondances de Howe sur un corps p-adique, Lecture Notes in Math., vol. 1291, Springer-Verlag, 1987. | MR | Zbl
, , ,[17] Tamely ramified supercuspidal representations of classical groups. I. Filtrations, Ann. scient. Éc. Norm. Sup. (4) 24 (1991) 705-738. | EuDML | Numdam | MR | Zbl
,[18] Level zero G-types, Compositio Math. 118 (2) (1999) 135-157. | MR | Zbl
,[19] Parabolic induction and the Bernstein decomposition, Compositio Math. 134 (2002) 113-133. | MR | Zbl
,[20] A proof of Langlands' conjecture on Plancherel measures: complementary series for p-adic groups, Ann. of Math. 132 (1990) 273-330. | MR | Zbl
,[21] Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J. 66 (1992) 1-41. | MR | Zbl
,[22] Intertwining and supercuspidal types for p-adic classical groups, Proc. London Math. Soc. 83 (2001) 120-140. | MR | Zbl
,[23] Double coset decompositions and intertwining, Manuscripta Math. 106 (2001) 349-364. | MR | Zbl
,[24] Stevens S., Types and representations of p-adic symplectic groups, PhD Thesis, King's College London, 1998.
Cité par Sources :