@article{ASENS_2004_4_37_2_312_0, author = {Stuart, David M. A.}, title = {The geodesic hypothesis and non-topological solitons on pseudo-riemannian manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {312--362}, publisher = {Elsevier}, volume = {Ser. 4, 37}, number = {2}, year = {2004}, doi = {10.1016/j.ansens.2003.07.001}, mrnumber = {2061784}, zbl = {1054.58026}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2003.07.001/} }
TY - JOUR AU - Stuart, David M. A. TI - The geodesic hypothesis and non-topological solitons on pseudo-riemannian manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2004 SP - 312 EP - 362 VL - 37 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2003.07.001/ DO - 10.1016/j.ansens.2003.07.001 LA - en ID - ASENS_2004_4_37_2_312_0 ER -
%0 Journal Article %A Stuart, David M. A. %T The geodesic hypothesis and non-topological solitons on pseudo-riemannian manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2004 %P 312-362 %V 37 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2003.07.001/ %R 10.1016/j.ansens.2003.07.001 %G en %F ASENS_2004_4_37_2_312_0
Stuart, David M. A. The geodesic hypothesis and non-topological solitons on pseudo-riemannian manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 2, pp. 312-362. doi : 10.1016/j.ansens.2003.07.001. http://www.numdam.org/articles/10.1016/j.ansens.2003.07.001/
[1] Stability of time-dependent particle-like solutions in nonlinear field theories, II, J. Math. Phys. 12 (1971) 945-952.
,[2] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rat. Mech. Anal. 82 (1983) 313-345. | MR | Zbl
, ,[3] An ODE approach to existence of positive solutions for semilinear problems in Rn, Indiana Univ. Math. J. 30 (1983) 141-157. | Zbl
, , ,[4] Soliton dynamics in a potential, Math. Res. Lett. 7 (2000) 329-342. | MR | Zbl
, ,[5] Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions, Arch. Rat. Mech. Anal. 46 (1972) 81-95. | Zbl
,[6] Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, 1995. | MR | Zbl
,[7] Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal. 74 (1987) 160-197. | MR | Zbl
, , ,[8] Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal. 94 (1990) 308-348. | MR | Zbl
, , ,[9] Semiclassical limit of a class of Schrödinger equations with potential, Comm. Partial Differential Equations 27 (2002) 693-704. | MR | Zbl
,[10] Particle Physics and Introduction to Field Theory, Harwood, Chur, 1984.
,[11] Fermi normal coordinates and some basic concepts in differential geometry, J. Math. Physics 4 (1963) 735-745. | MR | Zbl
, ,[12] Lectures on Mechanics, LMS Lecture Note Series, vol. 174, LMS, Cambridge, 1992. | MR | Zbl
,[13] Uniqueness of positive radial solutions of Δu+f(u)=0 in Rn, Trans. Amer. Math. Soc. 339 (1993) 495-505. | Zbl
,[14] Gravitation, Freeman, San Francisco, 1973. | MR
, , ,[15] Uniqueness of positive solutions of semilinear equations in Rn, Arch. Rat. Mech. Anal. 81 (2) (1983) 181-197. | MR | Zbl
, ,[16] Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys. 91 (1983) 313-327. | MR | Zbl
,[17] Instability of nonlinear bound states, Comm. Math. Phys. 100 (1985) 173-190. | MR | Zbl
, ,[18] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162. | MR | Zbl
,[19] Nonlinear Wave Equations, AMS, Providence, RI, 1989. | MR | Zbl
,[20] Solitons on pseudo-Riemannian manifolds I, Comm. PDE 1815-1838 (1998) 149-191. | MR | Zbl
,[21] Stuart D.M.A., Geodesics and the Einstein nonlinear wave system, University of Cambridge preprint. | MR
[22] Solitons on pseudo-Riemannian manifolds: stability and motion, Electron. Res. Announc. Amer. Math. Soc. 6 (2000) 75-89. | MR | Zbl
,[23] Modulational approach to stability of non-topological solitons in semilinear wave equations, J. Math. Pures Appl. 80 (1) (2001) 51-83. | MR | Zbl
,[24] Geodesics and the Einstein-nonlinear wave system, C. R. Acad. Sci. Paris Ser. I 336 (2003) 615-618. | MR | Zbl
,[25] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients II, Amer. J. Math. 123 (3) (2001) 385-423. | MR | Zbl
,[26] Gravitation and Cosmology, Wiley, New York, 1972.
,[27] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (4) (1983) 567-576. | MR | Zbl
,[28] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985) 472-491. | MR | Zbl
,Cité par Sources :