In the case of favorable pressure gradient, Oleinik obtained the global-in-x solutions to the steady Prandtl equations with low regularity (see Oleinik and Samokhin [9], P.21, Theorem 2.1.1). Due to the degeneracy of the equation near the boundary, the question of higher regularity of Oleinik's solutions remains open. See the local-in-x higher regularity established by Guo and Iyer [5]. In this paper, we prove that Oleinik's solutions are smooth up to the boundary for any , using further maximum principle techniques. Moreover, since Oleinik only assumed low regularity on the data prescribed at , our result implies instant smoothness (in the steady case, is often considered as initial time).
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.007
@article{AIHPC_2021__38_6_1989_0, author = {Wang, Yue and Zhang, Zhifei}, title = {Global {\protect\emph{C} } \protect\textsuperscript{\ensuremath{\infty}} regularity of the steady {Prandtl} equation with favorable pressure gradient}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1989--2004}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2021.02.007}, mrnumber = {4327905}, zbl = {1475.35099}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2021.02.007/} }
TY - JOUR AU - Wang, Yue AU - Zhang, Zhifei TI - Global C ∞ regularity of the steady Prandtl equation with favorable pressure gradient JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1989 EP - 2004 VL - 38 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2021.02.007/ DO - 10.1016/j.anihpc.2021.02.007 LA - en ID - AIHPC_2021__38_6_1989_0 ER -
%0 Journal Article %A Wang, Yue %A Zhang, Zhifei %T Global C ∞ regularity of the steady Prandtl equation with favorable pressure gradient %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1989-2004 %V 38 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2021.02.007/ %R 10.1016/j.anihpc.2021.02.007 %G en %F AIHPC_2021__38_6_1989_0
Wang, Yue; Zhang, Zhifei. Global C ∞ regularity of the steady Prandtl equation with favorable pressure gradient. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1989-2004. doi : 10.1016/j.anihpc.2021.02.007. http://www.numdam.org/articles/10.1016/j.anihpc.2021.02.007/
[1] Separation for the stationary Prandtl equation, Publ. Math. Inst. Hautes Études Sci., Volume 130 (2019), pp. 187-297 | DOI | MR | Zbl
[2] Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin., Volume 16 (2000), pp. 207-218 | DOI | MR | Zbl
[3] Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations, Arch. Ration. Mech. Anal., Volume 233 (2019), pp. 1319-1382 | DOI | MR | Zbl
[4] Validity of steady Prandtl layer expansions | arXiv | DOI | Zbl
[5] Regularity and expansion for steady Prandtl equations | arXiv | DOI | Zbl
[6] On global-in-x stability of Blasius profiles, Arch. Ration. Mech. Anal., Volume 237 (2020), pp. 951-998 | DOI | MR | Zbl
[7] Global-in-x stability of steady Prandtl expansions for 2D Navier-Stokes flows | arXiv
[8] Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, vol. 12, American Mathematical Society, Providence, RI, 1996 | MR | Zbl
[9] Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999 | MR | Zbl
[10]
, Heidelberg (1904), pp. 484-491[11] Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. R. Soc. Lond. A, Volume 299 (1967), pp. 491-507 | DOI | MR | Zbl
[12] Boundary layer separation and local behavior for the steady Prandtl equation | arXiv | DOI | Zbl
[13] On the global existence of solutions to the Prandtl's system, Adv. Math., Volume 181 (2004), pp. 88-133 | DOI | MR | Zbl
Cité par Sources :