This paper studies the asymptotic behavior of coexistence steady-states of the Shigesada-Kawasaki-Teramoto model as both cross-diffusion coefficients tend to infinity at the same rate. In the case when either one of two cross-diffusion coefficients tends to infinity, Lou and Ni [18] derived a couple of limiting systems, which characterize the asymptotic behavior of coexistence steady-states. Recently, a formal observation by Kan-on [10] implied the existence of a limiting system including the nonstationary problem as both cross-diffusion coefficients tend to infinity at the same rate. This paper gives a rigorous proof of his observation as far as the stationary problem. As a key ingredient of the proof, we establish a uniform estimate for all steady-states. Thanks to this a priori estimate, we show that the asymptotic profile of coexistence steady-states can be characterized by a solution of the limiting system.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.006
Mots-clés : Cross-diffusion, Nonlinear elliptic system, A priori estimate, Maximum principle, Limiting system, Bifurcation
@article{AIHPC_2021__38_6_1943_0, author = {Kuto, Kousuke}, title = {Full cross-diffusion limit in the stationary {Shigesada-Kawasaki-Teramoto} model}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1943--1959}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2021.02.006}, mrnumber = {4327903}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2021.02.006/} }
TY - JOUR AU - Kuto, Kousuke TI - Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1943 EP - 1959 VL - 38 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2021.02.006/ DO - 10.1016/j.anihpc.2021.02.006 LA - en ID - AIHPC_2021__38_6_1943_0 ER -
%0 Journal Article %A Kuto, Kousuke %T Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1943-1959 %V 38 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2021.02.006/ %R 10.1016/j.anihpc.2021.02.006 %G en %F AIHPC_2021__38_6_1943_0
Kuto, Kousuke. Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1943-1959. doi : 10.1016/j.anihpc.2021.02.006. http://www.numdam.org/articles/10.1016/j.anihpc.2021.02.006/
[1] Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971), pp. 321-340 | DOI | MR | Zbl
[2] Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differ. Equ., Volume 114 (1994), pp. 434-475 | DOI | MR | Zbl
[3] Spatial segregation limit of a competition-diffusion system, Eur. J. Appl. Math., Volume 10 (1999), pp. 97-115 | DOI | MR | Zbl
[4] Dynamics of Lotka-Volterra competition systems with large interaction, J. Differ. Equ., Volume 182 (2002), pp. 470-489 | DOI | MR | Zbl
[5] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg, 1998 | MR | Zbl
[6] Multiple existence of positive solutions of competing species equations with diffusion and large interactions, Adv. Math. Sci. Appl., Volume 12 (2002), pp. 435-453 | MR | Zbl
[7] Diffusive and nondiffusive population models (Naldi, G.; Pareschi, L.; Toscani, G., eds.), Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser, Basel, 2010, pp. 397-425 | DOI | MR | Zbl
[8] Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., Volume 28 (1993), pp. 509-536 | MR | Zbl
[9] On the structure of positive solutions for the Shigesada-Kawasaki-Teramoto model with large interspecific competition rate, Int. J. Bifurc. Chaos Appl. Sci. Eng., Volume 30 (2020) no. 1 | DOI | MR
[10] On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates, Discrete Contin. Dyn. Syst., Volume 40 (2020), pp. 3561-3570 | DOI | MR
[11] Stability of spiky solutions in a competition model with cross-diffusion, SIAM J. Appl. Math., Volume 71 (2011), pp. 1428-1457 | DOI | MR | Zbl
[12] Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, Oxford, 1964 | Zbl
[13] Limiting structure of shrinking solutions to the stationary SKT model with large cross-diffusion, SIAM J. Math. Anal., Volume 47 (2015), pp. 3993-4024 | DOI | MR
[14] Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., Volume 89 (2010), pp. 1037-1066 | DOI | MR | Zbl
[15] On limit systems for some population models with cross-diffusion, Discrete Contin. Dyn. Syst., Ser. B, Volume 17 (2012), pp. 2745-2769 | DOI | MR | Zbl
[16] Stability analysis on a type of steady state for the SKT competition model with large cross diffusion, J. Math. Anal. Appl., Volume 462 (2018), pp. 1048-1078 | DOI | MR
[17] Diffusion, self-diffusion and cross-diffusion, J. Differ. Equ., Volume 131 (1996), pp. 79-131 | DOI | MR | Zbl
[18] Diffusion vs cross-diffusion: an elliptic approach, J. Differ. Equ., Volume 154 (1999), pp. 157-190 | DOI | MR | Zbl
[19] On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., Volume 10 (2004), pp. 435-458 | DOI | MR | Zbl
[20] Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., Volume 35 (2015), pp. 1589-1607 | DOI | MR | Zbl
[21] Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., Volume 11 (1981), pp. 621-635 | DOI | MR | Zbl
[22] Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., Volume 9 (1980), pp. 49-64 | DOI | MR | Zbl
[23] Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., Volume 14 (1984), pp. 425-449 | DOI | MR | Zbl
[24] Numerical approach to existence and stability of stationary solutions to a SKT cross-diffusion equation, Math. Models Methods Appl. Sci., Volume 11 (2018), pp. 2191-2210 | DOI | MR
[25] The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82, SIAM, Philadelphia, 2011 | MR | Zbl
[26] The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 5271-5298 | DOI | MR | Zbl
[27] Diffusion and Ecological Problems: Modern Perspective, Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York, 2001 | MR | Zbl
[28] Spatial segregation of interacting species, J. Theor. Biol., Volume 79 (1979), pp. 83-99 | DOI | MR
[29] Instability of spiky steady states for S-K-T biological competing model with cross-diffusion, Nonlinear Anal., Volume 159 (2017), pp. 424-457 | DOI | MR
[30] The instability of spiky steady states for a competing species model with cross-diffusion, J. Differ. Equ., Volume 213 (2005), pp. 289-340 | DOI | MR | Zbl
[31] The existence and structure of large spiky steady states for S-K-T competition systems with cross diffusion, Discrete Contin. Dyn. Syst., Volume 29 (2011), pp. 367-385 | DOI | MR | Zbl
[32] Positive solutions for Lotka-Volterra systems with cross-diffusion (Chipot, M., ed.), Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 6, Elsevier, Amsterdam, 2008, pp. 411-501 | DOI | MR | Zbl
[33] Global solutions for the Shigesada-Kawasaki-Teramoto model with cross-diffusion (Du, Y.; Ishii, H.; Lin, W.-Y., eds.), Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Sci. Publ., Hackensack, NJ, 2009, pp. 282-299 | DOI | MR | Zbl
[34] Multiplicity of solutions in the Lotka-Volterra competition with cross-diffusion, RIMS Kokyuroku, Volume 1838 (2013), pp. 116-125
Cité par Sources :
This research was partially supported by JSPS KAKENHI Grant Number 19K03581.