Compactness of scalar-flat conformal metrics on low-dimensional manifolds with constant mean curvature on boundary
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1763-1793.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We concern C2-compactness of the solution set of the boundary Yamabe problem on smooth compact Riemannian manifolds with boundary provided that their dimensions are 4, 5 or 6. By conducting a quantitative analysis of a linear equation associated with the problem, we prove that the trace-free second fundamental form must vanish at possible blow-up points of a sequence of blowing-up solutions. Applying this result and the positive mass theorem, we deduce the C2-compactness for all 4-manifolds (which may be non-umbilic). For the 5-dimensional case, we also establish that a sum of the second-order derivatives of the trace-free second fundamental form is non-negative at possible blow-up points. We essentially use this fact to obtain the C2-compactness for all 5-manifolds. Finally, we show that the C2-compactness on 6-manifolds is true if the trace-free second fundamental form on the boundary never vanishes.

DOI : 10.1016/j.anihpc.2021.01.005
Classification : 35B40, 35J65, 35R01, 53A30, 53C21
Mots-clés : Boundary Yamabe problem, Compactness, Blow-up analysis, Positive mass theorem
Kim, Seunghyeok 1 ; Musso, Monica 2 ; Wei, Juncheng 3

1 a Department of Mathematics and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
2 b Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
3 c Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada
@article{AIHPC_2021__38_6_1763_0,
     author = {Kim, Seunghyeok and Musso, Monica and Wei, Juncheng},
     title = {Compactness of scalar-flat conformal metrics on low-dimensional manifolds with constant mean curvature on boundary},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1763--1793},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2021},
     doi = {10.1016/j.anihpc.2021.01.005},
     mrnumber = {4327897},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2021.01.005/}
}
TY  - JOUR
AU  - Kim, Seunghyeok
AU  - Musso, Monica
AU  - Wei, Juncheng
TI  - Compactness of scalar-flat conformal metrics on low-dimensional manifolds with constant mean curvature on boundary
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1763
EP  - 1793
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2021.01.005/
DO  - 10.1016/j.anihpc.2021.01.005
LA  - en
ID  - AIHPC_2021__38_6_1763_0
ER  - 
%0 Journal Article
%A Kim, Seunghyeok
%A Musso, Monica
%A Wei, Juncheng
%T Compactness of scalar-flat conformal metrics on low-dimensional manifolds with constant mean curvature on boundary
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1763-1793
%V 38
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2021.01.005/
%R 10.1016/j.anihpc.2021.01.005
%G en
%F AIHPC_2021__38_6_1763_0
Kim, Seunghyeok; Musso, Monica; Wei, Juncheng. Compactness of scalar-flat conformal metrics on low-dimensional manifolds with constant mean curvature on boundary. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1763-1793. doi : 10.1016/j.anihpc.2021.01.005. http://www.numdam.org/articles/10.1016/j.anihpc.2021.01.005/

[1] Almaraz, S. An existence theorem of conformal scalar-flat metrics on manifolds with boundary, Pac. J. Math., Volume 248 (2010), pp. 1-22 | DOI | MR | Zbl

[2] Almaraz, S. A compactness theorem for scalar-flat metrics on manifolds with boundary, Calc. Var. Partial Differ. Equ., Volume 41 (2011), pp. 341-386 | DOI | MR | Zbl

[3] Almaraz, S. Blow-up phenomena for scalar-flat metrics on manifolds with boundary, J. Differ. Equ., Volume 251 (2011), pp. 1813-1840 | DOI | MR | Zbl

[4] Almaraz, S.; Barbosa, E.; de Lima, L.L. A positive mass theorem for asymptotically flat manifolds with a non-compact boundary, Commun. Anal. Geom., Volume 24 (2016), pp. 673-715 | DOI | MR

[5] Almaraz, S.; de Queiroz, O.S.; Wang, S. A compactness theorem for scalar-flat metrics on 3-manifolds with boundary, J. Funct. Anal., Volume 277 (2019) no. 7, pp. 2092-2116 | DOI | MR

[6] Almaraz, S.; Sun, L. Convergence of the Yamabe flow on manifolds with minimal boundary, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 20 (2020) no. 3, pp. 1197-1272 | MR

[7] Aubin, T. Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976), pp. 269-296 | MR | Zbl

[8] Brendle, S. Blow-up phenomena for the Yamabe equation, J. Am. Math. Soc., Volume 21 (2008), pp. 951-979 | DOI | MR | Zbl

[9] Brendle, S.; Chen, S. An existence theorem for the Yamabe problem on manifolds with boundary, J. Eur. Math. Soc., Volume 16 (2014), pp. 991-1016 | DOI | MR | Zbl

[10] Brendle, S.; Marques, F. Blow-up phenomena for the Yamabe equation II, J. Differ. Geom., Volume 81 (2009), pp. 225-250 | DOI | MR | Zbl

[11] Cárdenas, E.; Sierra, W. Uniqueness of solutions of the Yamabe problem on manifolds with boundary, Nonlinear Anal., Volume 187 (2019), pp. 125-133 | DOI | MR

[12] Chen, S.S. Conformal deformation to scalar flat metrics with constant mean curvature on the boundary in higher dimensions (preprint) | arXiv

[13] Cherrier, P. Problèmes de Neumann non linéaires sur les variétés Riemannienes, J. Funct. Anal., Volume 57 (1984), pp. 154-206 | DOI | MR | Zbl

[14] Dávila, J.; del Pino, M.; Sire, Y. Nondegeneracy of the bubble in the critical case for nonlocal equations, Proc. Am. Math. Soc., Volume 141 (2013), pp. 3865-3870 | DOI | MR | Zbl

[15] Deng, S.; Kim, S.; Pistoia, A. Linear perturbations of the fractional Yamabe problem on the minimal conformal infinity, Commun. Anal. Geom. (2021) (in press) | MR

[16] Disconzi, M.M.; Khuri, M.A. Compactness and non-compactness for the Yamabe problem on manifolds with boundary, J. Reine Angew. Math., Volume 724 (2017), pp. 145-201 | DOI | MR

[17] Djadli, Z.; Malchiodi, A.; Ould Ahmedou, M. Prescribing scalar and boundary mean curvature on the three dimensional half sphere, J. Geom. Anal., Volume 13 (2003), pp. 255-289 | DOI | MR | Zbl

[18] Djadli, Z.; Malchiodi, A.; Ould Ahmedou, M. The prescribed boundary mean curvature problem on B4 , J. Differ. Equ., Volume 206 (2004), pp. 373-398 | DOI | MR | Zbl

[19] Druet, O. Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not., Volume 23 (2004), pp. 1143-1191 | DOI | MR | Zbl

[20] Escobar, J.F. Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J., Volume 37 (1988), pp. 687-698 | DOI | MR | Zbl

[21] Escobar, J.F. Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate, Commun. Pure Appl. Math., Volume 43 (1990), pp. 857-883 | DOI | MR | Zbl

[22] Escobar, J.F. Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. Math., Volume 136 (1992), pp. 1-50 | DOI | MR | Zbl

[23] Escobar, J.F. The Yamabe problem on manifolds with boundary, J. Differ. Geom., Volume 35 (1992), pp. 21-84 | DOI | MR | Zbl

[24] Escobar, J.F. Conformal metrics with prescribed mean curvature on the boundary, Calc. Var. Partial Differ. Equ., Volume 4 (1996), pp. 559-592 | DOI | MR | Zbl

[25] Felli, V.; Ould Ahmedou, A. Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries, Math. Z., Volume 244 (2003), pp. 175-210 | DOI | MR | Zbl

[26] Felli, V.; Ould Ahmedou, A. A geometric equation with critical nonlinearity on the boundary, Pac. J. Math., Volume 218 (2005), pp. 75-99 | DOI | MR | Zbl

[27] Ghimenti, M.; Micheletti, A.M. A compactness result for scalar-flat metrics on manifolds with umbilic boundary, Nonlinear Anal., Volume 200 (2020) | DOI | MR

[28] Ghimenti, M.; Micheletti, A.M.; Pistoia, A. Linear perturbation of the Yamabe problem on manifolds with boundary, J. Geom. Anal., Volume 28 (2018), pp. 1315-1340 | DOI | MR

[29] Ghimenti, M.; Micheletti, A.M.; Pistoia, A. Blow-up phenomena for linearly perturbed Yamabe problem on manifolds with umbilic boundary, J. Differ. Equ., Volume 267 (2019), pp. 587-618 | DOI | MR

[30] Han, Z.-C.; Li, Y.Y. The Yamabe problem on manifolds with boundary: existence and compactness results, Duke Math. J., Volume 99 (1999), pp. 485-542 | MR | Zbl

[31] Khuri, M.; Marques, F.; Schoen, R. A compactness theorem for the Yamabe problem, J. Differ. Geom., Volume 81 (2009), pp. 143-196 | DOI | MR | Zbl

[32] Kim, S.; Musso, M.; Wei, J. Existence theorems of the fractional Yamabe problem, Anal. PDE, Volume 11 (2018), pp. 75-113 | DOI | MR

[33] Kim, S.; Musso, M.; Wei, J. A compactness theorem of the fractional Yamabe problem, Part I: The non-umbilic conformal infinity, J. Eur. Math. Soc. (2021) (in press) | MR

[34] Mayer, M.; Ndiaye, C.B. Barycenter technique and the Riemann mapping problem of Cherrier-Escobar, J. Differ. Geom., Volume 107 (2017), pp. 519-560 | DOI | MR

[35] Li, G. A compactness theorem on Branson's Q -curvature equation (preprint) | arXiv | MR

[36] Li, Y.Y.; Xiong, J. Compactness of conformal metrics with constant Q -curvature. I, Adv. Math., Volume 345 (2019), pp. 116-160 | DOI | MR

[37] Li, Y.Y.; Zhang, L. Compactness of solutions to the Yamabe problem II, Calc. Var. Partial Differ. Equ., Volume 25 (2005), pp. 185-237 | DOI | MR | Zbl

[38] Li, Y.Y.; Zhang, L. Compactness of solutions to the Yamabe problem III, J. Funct. Anal., Volume 245 (2006), pp. 438-474 | DOI | MR | Zbl

[39] Li, Y.; Zhu, M. Uniqueness theorems through the method of moving spheres, Duke Math. J., Volume 80 (1995), pp. 383-417 | MR | Zbl

[40] Li, Y.; Zhu, M. Yamabe type equations on three dimensional Riemannian manifolds, Commun. Contemp. Math., Volume 1 (1999), pp. 1-50 | DOI | MR | Zbl

[41] Marques, F.C. A priori estimates for the Yamabe problem in the non-locally conformally flat case, J. Differ. Geom., Volume 71 (2005), pp. 315-346 | DOI | MR | Zbl

[42] Marques, F.C. Existence results for the Yamabe problem on manifolds with boundary, Indiana Univ. Math. J., Volume 54 (2005), pp. 1599-1620 | DOI | MR | Zbl

[43] Marques, F.C. Conformal deformations to scalar-flat metris with constant mean curvature on the boundary, Commun. Anal. Geom., Volume 15 (2007), pp. 381-405 | DOI | MR | Zbl

[44] Schoen, R. Course Notes on ‘Topics in Differential Geometry’, Stanford University, 1988 https://www.math.washington.edu/~pollack/research/Schoen-1988-notes.html (at available at)

Cité par Sources :