We prove a quantitative and global in time semiclassical limit from the Hartree to the Vlasov equation in the case of a singular interaction potential in dimension
Mots-clés : Hartree equation, Nonlinear Schrödinger equation, Vlasov equation, Coulomb interaction, Gravitational interaction, Semiclassical limit
@article{AIHPC_2021__38_6_1739_0, author = {Lafleche, Laurent}, title = {Global semiclassical limit from {Hartree} to {Vlasov} equation for concentrated initial data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1739--1762}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2021.01.004}, mrnumber = {4327896}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2021.01.004/} }
TY - JOUR AU - Lafleche, Laurent TI - Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1739 EP - 1762 VL - 38 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2021.01.004/ DO - 10.1016/j.anihpc.2021.01.004 LA - en ID - AIHPC_2021__38_6_1739_0 ER -
%0 Journal Article %A Lafleche, Laurent %T Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1739-1762 %V 38 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2021.01.004/ %R 10.1016/j.anihpc.2021.01.004 %G en %F AIHPC_2021__38_6_1739_0
Lafleche, Laurent. Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1739-1762. doi : 10.1016/j.anihpc.2021.01.004. https://www.numdam.org/articles/10.1016/j.anihpc.2021.01.004/
[1] Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data, Commun. Pure Appl. Math., Volume 64 (2011) no. 9, pp. 1199-1242 | DOI | MR | Zbl
[2] Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions, Commun. Partial Differ. Equ., Volume 35 ( July 2010 ) no. 8, pp. 1490-1515 | DOI | MR | Zbl
[3] The classical limit of the Heisenberg and time-dependent Hartree–Fock equations: the Wick symbol of the solution, Math. Res. Lett., Volume 20 ( Jan. 2013 ) no. 1, pp. 119-139 | DOI | MR | Zbl
[4] The semiclassical limit of the time dependent Hartree–Fock equation: the Weyl symbol of the solution, Anal. PDE, Volume 6 (2013) no. 7, pp. 1649-1674 | DOI | MR | Zbl
[5] On an inequality of Lieb and Thirring, Lett. Math. Phys., Volume 19 (1990) no. 2, pp. 167-170 | DOI | MR | Zbl
[6] Strong semiclassical approximation of Wigner functions for the Hartree dynamics, Rend. Lincei, Mat. Appl., Volume 22 (2011) no. 4, pp. 525-552 | arXiv | MR | Zbl
[7] Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction, J. Math. Pures Appl., Volume 105 ( Jan. 2016 ) no. 1, pp. 1-30 | DOI | MR
[8] Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincare (C) Non Linear Anal., Volume 2 (1985) no. 2, pp. 101-118 | DOI | Numdam | MR | Zbl
[9] Derivation of the Schrödinger–Poisson equation from the quantum
[10] Weak coupling limit of the
[11] Mean-field evolution of fermionic mixed states, Commun. Pure Appl. Math., Volume 69 (2016) no. 12, pp. 2250-2303 | DOI | MR
[12] From the Hartree dynamics to the Vlasov equation, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 1, pp. 273-334 | DOI | MR
[13] Mean-field evolution of fermionic systems, Commun. Math. Phys., Volume 331 ( Nov. 2014 ) no. 3, pp. 1087-1131 | DOI | MR | Zbl
[14] The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation, Math. Methods Appl. Sci., Volume 14 ( Jan. 1991 ) no. 1, pp. 35-61 | DOI | MR | Zbl
[15]
[16] Propagation of space moments in the Vlasov-Poisson equation and further results, Ann. Inst. Henri Poincare (C) Non Linear Anal., Volume 16 ( July 1999 ) no. 4, pp. 503-533 | DOI | Numdam | MR | Zbl
[17] Solutions globales d'équations du type Vlasov-Poisson, C. R. Séances Acad. Sci., Sér. I. Math., Volume 307 (1988) no. 12, pp. 655-658 | MR | Zbl
[18] Global weak solutions of kinetic equations, Rend. Semin. Mat. Univ. Politec. Torino, Volume 46 (1988) no. 3, pp. 259-288 (Publisher: Citeseer) | MR | Zbl
[19] Time-dependent rescalings and Lyapunov functionals for the Vlasov-Poisson and Euler-Poisson systems, and for related models of kinetic equations, fluid dynamics and quantum physics, Math. Models Methods Appl. Sci., Volume 11 ( Apr. 2001 ) no. 03, pp. 407-432 | DOI | MR | Zbl
[20] Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., Volume 5 (2001) no. 6, pp. 1169-1205 | DOI | MR | Zbl
[21] A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, J. Stat. Phys., Volume 145 ( Oct. 2011 ) no. 1, p. 23 | arXiv | DOI | MR | Zbl
[22] On the mean-field limit of bosons with Coulomb two-body interaction, Commun. Math. Phys., Volume 288 ( June 2009 ) no. 3, pp. 1023-1059 | arXiv | DOI | MR | Zbl
[23]
[24] On a class of non linear Schrödinger equations with non local interaction, Math. Z., Volume 170 (1980) no. 2, pp. 109-136 | DOI | MR | Zbl
[25] The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. Henri Poincare (C) Non Linear Anal., Volume 2 ( July 1985 ) no. 4, pp. 309-327 | DOI | Numdam | MR | Zbl
[26] On the mean field and classical limits of quantum mechanics, Commun. Math. Phys., Volume 343 (2016) no. 1, pp. 165-205 | arXiv | DOI | MR
[27] The Schrödinger equation in the mean-field and semiclassical regime, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 1, pp. 57-94 | DOI | MR
[28] Wave packets and the quadratic Monge-Kantorovich distance in quantum mechanics, C. R. Math., Volume 356 ( Feb. 2018 ) no. 2, pp. 177-197 | DOI | MR
[29] Empirical measures and quantum mechanics: applications to the mean-field limit, Commun. Math. Phys. ( Mar. 2019 ) | arXiv | MR
[30] On the derivation of the Hartree equation from the
[31] Mean-field approximation of quantum systems and classical limit, Math. Models Methods Appl. Sci., Volume 13 ( Jan. 2003 ) no. 01, pp. 59-73 | arXiv | DOI | MR | Zbl
[32] Homogenization limits and Wigner transforms, Commun. Pure Appl. Math., Volume 50 (1997) no. 4, pp. 323-379 | DOI | MR | Zbl
[33] Smoothing effect for some Schrödinger equations, J. Funct. Anal., Volume 85 ( Aug. 1989 ) no. 2, pp. 307-348 | DOI | MR | Zbl
[34] Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and Schrodinger-Poisson systems, Math. Methods Appl. Sci., Volume 17 ( Apr. 1994 ) no. 5, pp. 349-376 | DOI | MR | Zbl
[35] Propagation of moments and semiclassical limit from Hartree to Vlasov equation, J. Stat. Phys., Volume 177 ( July 2019 ) no. 1, pp. 20-60 | DOI | MR
[36] Sur les mesures de Wigner, Rev. Mat. Iberoam., Volume 9 (1993) no. 3, pp. 553-618 | DOI | MR | Zbl
[37] Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR | Zbl
[38] Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., Volume 86 ( July 2006 ) no. 1, pp. 68-79 | DOI | MR | Zbl
[39] The classical limit of a self-consistent quantum Vlasov equation, Math. Models Methods Appl. Sci., Volume 3 ( Feb. 1993 ) no. 01, pp. 109-124 | DOI | MR | Zbl
[40] Bogoliubov corrections and trace norm convergence for the Hartree dynamics, Rev. Math. Phys. ( Feb. 2019 ) | arXiv | MR
[41] Moment propagation for weak solutions to the Vlasov–Poisson system, Commun. Partial Differ. Equ., Volume 37 ( July 2012 ) no. 7, pp. 1273-1285 | DOI | MR | Zbl
[42] Space moments of the Vlasov-Poisson system: propagation and regularity, SIAM J. Math. Anal., Volume 46 ( Jan. 2014 ) no. 3, pp. 1754-1770 | DOI | MR | Zbl
[43] Time decay, propagation of low moments and dispersive effects for kinetic equations, Commun. Partial Differ. Equ., Volume 21 ( Jan. 1996 ) no. 3–4, pp. 801-806 | MR | Zbl
[44] Hartree corrections in a mean-field limit for fermions with Coulomb interaction, J. Phys. A, Math. Theor., Volume 50 (2017) no. 24 | DOI | MR
[45] A new method and a new scaling for deriving fermionic mean-field dynamics, Math. Phys. Anal. Geom., Volume 19 ( Mar. 2016 ) no. 1, p. 3 | DOI | MR
[46] Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., Volume 95 ( Feb. 1992 ) no. 2, pp. 281-303 | DOI | MR | Zbl
[47] A simple derivation of mean field limits for quantum systems, Lett. Math. Phys., Volume 97 ( Aug. 2011 ) no. 2, pp. 151-164 | DOI | MR | Zbl
[48] Mean field evolution of fermions with Coulomb interaction, J. Stat. Phys., Volume 166 (2017) no. 6, pp. 1345-1364 | DOI | MR
[49] Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., Volume 291 ( Oct. 2009 ) no. 1, pp. 31-61 | arXiv | DOI | MR | Zbl
[50] Mean-field evolution of fermions with singular interaction (Cadamuro, D.; Duell, M.; Dybalski, W.; Simonella, S., eds.), Macroscopic Limits of Quantum Systems, Springer Proceedings in Mathematics & Statistics, Springer International Publishing, Cham, 2018, pp. 81-99 | arXiv | DOI | Zbl
[51] Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Partial Differ. Equ., Volume 16 ( Jan. 1991 ) no. 8–9, pp. 1313-1335 | MR | Zbl
Cité par Sources :