A normalized solitary wave solution of the Maxwell-Dirac equations
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1681-1702.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We prove the existence of a L2-normalized solitary wave solution for the Maxwell-Dirac equations in (3+1)-Minkowski space. In addition, for the Coulomb-Dirac model, describing fermions with attractive Coulomb interactions in the mean-field limit, we prove the existence of the (positive) energy minimizer.

Reçu le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.006
Classification : 49S05, 81V10, 35Q60, 35Q51
Mots-clés : Maxwell-Dirac equations, Solitary waves, Variational methods
Nolasco, Margherita 1

1 Dipartimento di Ingegneria e Scienze dell'informazione e Matematica, Università dell'Aquila, via Vetoio, Loc. Coppito, 67010 L'Aquila (AQ), Italy
@article{AIHPC_2021__38_6_1681_0,
     author = {Nolasco, Margherita},
     title = {A normalized solitary wave solution of the {Maxwell-Dirac} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1681--1702},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.12.006},
     mrnumber = {4327893},
     zbl = {1475.49060},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.006/}
}
TY  - JOUR
AU  - Nolasco, Margherita
TI  - A normalized solitary wave solution of the Maxwell-Dirac equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1681
EP  - 1702
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.006/
DO  - 10.1016/j.anihpc.2020.12.006
LA  - en
ID  - AIHPC_2021__38_6_1681_0
ER  - 
%0 Journal Article
%A Nolasco, Margherita
%T A normalized solitary wave solution of the Maxwell-Dirac equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1681-1702
%V 38
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.006/
%R 10.1016/j.anihpc.2020.12.006
%G en
%F AIHPC_2021__38_6_1681_0
Nolasco, Margherita. A normalized solitary wave solution of the Maxwell-Dirac equations. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1681-1702. doi : 10.1016/j.anihpc.2020.12.006. http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.006/

[1] Abenda, Simonetta Solitary waves for Maxwell-Dirac and Coulomb-Dirac models, Ann. Inst. Henri Poincaré A, Phys. Théor., Volume 68 (1998) no. 2, pp. 229-244 | Numdam | MR | Zbl

[2] Buffoni, Boris; Esteban, Maria J.; Séré, Eric Normalized solutions to strongly indefinite semilinear equations, Adv. Nonlinear Stud., Volume 6 (2006) no. 2, pp. 323-347 | DOI | MR | Zbl

[3] Comech, Andrew; Stuart, David Small amplitude solitary waves in the Dirac-Maxwell system, Commun. Pure Appl. Anal., Volume 17 (2018) no. 4, pp. 1349-1370 | DOI | MR | Zbl

[4] Comech, Andrew; Zubkov, Mikhail Polarons as stable solitary wave solutions to the Dirac-Coulomb system, J. Phys. A, Volume 46 (2013) no. 43 | MR | Zbl

[5] Coti Zelati, Vittorio; Nolasco, Margherita Ground states for pseudo-relativistic Hartree equations of critical type, Rev. Mat. Iberoam., Volume 29 (2013) no. 4, pp. 1421-1436 | DOI | MR | Zbl

[6] Coti Zelati, Vittorio; Nolasco, Margherita Ground state for the relativistic one electron atom in a self-generated electromagnetic field, SIAM J. Math. Anal., Volume 51 (2019) no. 3, pp. 2206-2230 | DOI | MR | Zbl

[7] Dolbeault, Jean; Esteban, Maria J.; Séré, Eric Variational characterization for eigenvalues of Dirac operators, Calc. Var. Partial Differ. Equ., Volume 10 (2000) no. 4, pp. 321-347 | DOI | MR | Zbl

[8] Esteban, Maria J.; Georgiev, Vladimir; Séré, Eric Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differ. Equ., Volume 4 (1996) no. 3, pp. 265-281 | DOI | MR | Zbl

[9] Esteban, Maria J.; Séré, Eric Solutions of the Dirac-Fock equations for atoms and molecules, Commun. Math. Phys., Volume 203 (1999) no. 3, pp. 499-530 | DOI | MR | Zbl

[10] Fröhlich, Jürg; Lars, B.; Jonsson, G.; Lenzmann, Enno Boson stars as solitary waves, Commun. Math. Phys., Volume 274 (2007) no. 1, pp. 1-30 | DOI | MR | Zbl

[11] Lieb, Elliott H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., Volume 57 ( 1976/77 ) no. 2, pp. 93-105 | DOI | MR | Zbl

[12] Lions, P.-L. The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | Numdam | MR | Zbl

[13] Lisi, A. Garrett A solitary wave solution of the Maxwell-Dirac equations, J. Phys. A, Volume 28 (1995) no. 18, pp. 5385-5392 | DOI | MR | Zbl

[14] Thaller, Bernd The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

Cité par Sources :

Research partially supported by MIUR grant PRIN 2015 2015KB9WPT, “Variational methods, with applications to problems in mathematical physics and geometry”.