The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1583-1603.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider classical solutions of the inviscid Surface Quasi-geostrophic equation that are a small perturbation ϵ from a radial stationary solution θ=|x|. We use a modified energy method to prove the existence time of classical solutions from 1ϵ to a time scale of 1ϵ4. Moreover, by perturbing in a suitable direction we construct global smooth solutions, via bifurcation, that rotate uniformly in time and space.

Reçu le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.005
Mots-clés : Surface Quasi-geostrophic, Normal forms, Rotating solutions
Castro, Ángel 1 ; Córdoba, Diego 1 ; Zheng, Fan 1

1 Instituto de Ciencias Matemáticas ICMAT-CSIC-UAM-UCM-UC3M, 28049, Madrid, Spain
@article{AIHPC_2021__38_5_1583_0,
     author = {Castro, \'Angel and C\'ordoba, Diego and Zheng, Fan},
     title = {The lifespan of classical solutions for the inviscid {Surface} {Quasi-geostrophic} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1583--1603},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.12.005},
     mrnumber = {4300933},
     zbl = {1477.35271},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/}
}
TY  - JOUR
AU  - Castro, Ángel
AU  - Córdoba, Diego
AU  - Zheng, Fan
TI  - The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1583
EP  - 1603
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/
DO  - 10.1016/j.anihpc.2020.12.005
LA  - en
ID  - AIHPC_2021__38_5_1583_0
ER  - 
%0 Journal Article
%A Castro, Ángel
%A Córdoba, Diego
%A Zheng, Fan
%T The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1583-1603
%V 38
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/
%R 10.1016/j.anihpc.2020.12.005
%G en
%F AIHPC_2021__38_5_1583_0
Castro, Ángel; Córdoba, Diego; Zheng, Fan. The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1583-1603. doi : 10.1016/j.anihpc.2020.12.005. http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/

[1] Arnol'd, V.I. Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Science, vol. 250, Springer-Verlag, New York-Berlin, 1983 (translated from the Russian by Joseph Szücs, translation edited by Mark Levi) | MR | Zbl

[2] Buckmaster, T.; Shkoller, S.; Vicol, V. Nonuniqueness of weak solutions to the SQG equation, Commun. Pure Appl. Math., Volume 72 (2019) no. 9, pp. 1809-1874 | DOI | MR | Zbl

[3] Castro, A.; Córdoba, D. Infinite energy solutions of the surface quasi-geostrophic equation, Adv. Math., Volume 225 (2010) no. 4, pp. 1820-1829 | DOI | MR | Zbl

[4] Castro, A.; Córdoba, D.; Gómez-Serrano, J. Global smooth solutions for the inviscid SQG equation, Mem. Am. Math. Soc., Volume 266 (2020), p. 1292 | MR | Zbl

[5] Constantin, P. Geometric statistics in turbulence, SIAM Rev., Volume 36 (1994) no. 1, pp. 73-98 | DOI | MR | Zbl

[6] Constantin, P.; Lai, M.-C.; Sharma, R.; Tseng, Y.-H.; Wu, J. New numerical results for the surface quasi-geostrophic equation, J. Sci. Comput., Volume 50 (2012) no. 1, pp. 1-28 | DOI | MR | Zbl

[7] Constantin, P.; Majda, A.J.; Tabak, E. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, Volume 7 (1994) no. 6, pp. 1495-1533 | DOI | MR | Zbl

[8] Constantin, P.; Nguyen, H.Q. Global weak solutions for SQG in bounded domains, Commun. Pure Appl. Math., Volume 71 (2018) no. 11, pp. 2323-2333 | DOI | MR | Zbl

[9] Constantin, P.; Nie, Q.; Schörghofer, N. Nonsingular surface quasi-geostrophic flow, Phys. Lett. A, Volume 241 (1998) no. 3, pp. 168-172 | DOI | MR | Zbl

[10] Córdoba, D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. Math. (2), Volume 148 (1998) no. 3, pp. 1135-1152 | DOI | MR | Zbl

[11] Córdoba, D.; Fefferman, C. Growth of solutions for QG and 2D Euler equations, J. Am. Math. Soc., Volume 15 (2002) no. 3, pp. 665-670 | DOI | MR | Zbl

[12] Córdoba, D.; Gómez-Serrano, J.; Ionescu, A.D. Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 1211-1251 | DOI | MR | Zbl

[13] Crandall, M.G.; Rabinowitz, P.H. Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971), pp. 321-340 | DOI | MR | Zbl

[14] Dritschel, D.G. An exact steadily rotating surface quasi-geostrophic elliptical vortex, Geophys. Astrophys. Fluid Dyn., Volume 105 (2011) no. 4–5, pp. 368-376 | DOI | MR | Zbl

[15] Elgindi, T.M.; Jeong, I.-J. Symmetries and critical phenomena in fluids, Commun. Pure Appl. Math., Volume 73 (2020) no. 2, pp. 257-316 | DOI | MR | Zbl

[16] Friedlander, S.; Shvydkoy, R. The unstable spectrum of the surface quasi-geostrophic equation, J. Math. Fluid Mech., Volume 7 (2005) no. suppl. 1, p. S81-S93 | DOI | MR | Zbl

[17] Gancedo, F.; Patel, N. On the Local Existence and Blow-up for Generalized sqg Patches, 2018

[18] Gravejat, P.; Smets, D. Smooth travelling-wave solutions to the inviscid surface quasi-geostrophic equation, Int. Math. Res. Not., Volume 6 (2019), pp. 1744-1757 | DOI | MR | Zbl

[19] Held, I.M.; Pierrehumbert, R.T.; Garner, S.T.; Swanson, K.L. Surface quasi-geostrophic dynamics, J. Fluid Mech., Volume 282 (1995), pp. 1-20 | DOI | MR | Zbl

[20] Hunter, J.K.; Shu, J.; Zhang, Q. Global Solutions of a Surface Quasi-Geostrophic Front Equation, 2018

[21] Hunter, J.K.; Shu, J.; Zhang, Q. Global Solutions for a Family of gsqg Front Equations, 2020

[22] Kappeler, T.; Pöschel, J. KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 45, Springer-Verlag, Berlin, 2003 | MR | Zbl

[23] Kiselev, A.; Nazarov, F. A simple energy pump for the surface quasi-geostrophic equation, Volume 7 (2012), pp. 175-179 | MR | Zbl

[24] Kiselev, A.; Ryzhik, L.; Yao, Y.; Zlatoš, A. Finite time singularity for the modified SQG patch equation, Ann. Math. (2), Volume 184 (2016) no. 3, pp. 909-948 | DOI | MR | Zbl

[25] Berti, R.F.M.; Pusateri, F. Birkhoff normal form and long time existence for periodic gravity water waves (preprint) | arXiv | Zbl

[26] Majda, A.J.; Bertozzi, A.L. Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[27] Marchand, F. Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces Lp or H˙1/2 , Commun. Math. Phys., Volume 277 (2008) no. 1, pp. 45-67 | DOI | MR | Zbl

[28] Ohkitani, K.; Yamada, M. Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow, Phys. Fluids, Volume 9 (1997) no. 4, pp. 876-882 | DOI | MR | Zbl

[29] Pedlosky, J. Geophysical Fluid Dynamics, 1, Springer-Verlag, New York and Berlin, 1982 | DOI

[30] Resnick, S.G. Dynamical problems in non-linear advective partial differential equations, University of Chicago, Department of Mathematics, 1995 (PhD thesis) | MR

[31] Shatah, J. Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 685-696 | DOI | MR | Zbl

Cité par Sources :