We consider classical solutions of the inviscid Surface Quasi-geostrophic equation that are a small perturbation ϵ from a radial stationary solution . We use a modified energy method to prove the existence time of classical solutions from to a time scale of . Moreover, by perturbing in a suitable direction we construct global smooth solutions, via bifurcation, that rotate uniformly in time and space.
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.005
@article{AIHPC_2021__38_5_1583_0, author = {Castro, \'Angel and C\'ordoba, Diego and Zheng, Fan}, title = {The lifespan of classical solutions for the inviscid {Surface} {Quasi-geostrophic} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1583--1603}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2021}, doi = {10.1016/j.anihpc.2020.12.005}, mrnumber = {4300933}, zbl = {1477.35271}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/} }
TY - JOUR AU - Castro, Ángel AU - Córdoba, Diego AU - Zheng, Fan TI - The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1583 EP - 1603 VL - 38 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/ DO - 10.1016/j.anihpc.2020.12.005 LA - en ID - AIHPC_2021__38_5_1583_0 ER -
%0 Journal Article %A Castro, Ángel %A Córdoba, Diego %A Zheng, Fan %T The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1583-1603 %V 38 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/ %R 10.1016/j.anihpc.2020.12.005 %G en %F AIHPC_2021__38_5_1583_0
Castro, Ángel; Córdoba, Diego; Zheng, Fan. The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1583-1603. doi : 10.1016/j.anihpc.2020.12.005. http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.005/
[1] Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Science, vol. 250, Springer-Verlag, New York-Berlin, 1983 (translated from the Russian by Joseph Szücs, translation edited by Mark Levi) | MR | Zbl
[2] Nonuniqueness of weak solutions to the SQG equation, Commun. Pure Appl. Math., Volume 72 (2019) no. 9, pp. 1809-1874 | DOI | MR | Zbl
[3] Infinite energy solutions of the surface quasi-geostrophic equation, Adv. Math., Volume 225 (2010) no. 4, pp. 1820-1829 | DOI | MR | Zbl
[4] Global smooth solutions for the inviscid SQG equation, Mem. Am. Math. Soc., Volume 266 (2020), p. 1292 | MR | Zbl
[5] Geometric statistics in turbulence, SIAM Rev., Volume 36 (1994) no. 1, pp. 73-98 | DOI | MR | Zbl
[6] New numerical results for the surface quasi-geostrophic equation, J. Sci. Comput., Volume 50 (2012) no. 1, pp. 1-28 | DOI | MR | Zbl
[7] Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, Volume 7 (1994) no. 6, pp. 1495-1533 | DOI | MR | Zbl
[8] Global weak solutions for SQG in bounded domains, Commun. Pure Appl. Math., Volume 71 (2018) no. 11, pp. 2323-2333 | DOI | MR | Zbl
[9] Nonsingular surface quasi-geostrophic flow, Phys. Lett. A, Volume 241 (1998) no. 3, pp. 168-172 | DOI | MR | Zbl
[10] Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. Math. (2), Volume 148 (1998) no. 3, pp. 1135-1152 | DOI | MR | Zbl
[11] Growth of solutions for QG and 2D Euler equations, J. Am. Math. Soc., Volume 15 (2002) no. 3, pp. 665-670 | DOI | MR | Zbl
[12] Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 1211-1251 | DOI | MR | Zbl
[13] Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971), pp. 321-340 | DOI | MR | Zbl
[14] An exact steadily rotating surface quasi-geostrophic elliptical vortex, Geophys. Astrophys. Fluid Dyn., Volume 105 (2011) no. 4–5, pp. 368-376 | DOI | MR | Zbl
[15] Symmetries and critical phenomena in fluids, Commun. Pure Appl. Math., Volume 73 (2020) no. 2, pp. 257-316 | DOI | MR | Zbl
[16] The unstable spectrum of the surface quasi-geostrophic equation, J. Math. Fluid Mech., Volume 7 (2005) no. suppl. 1, p. S81-S93 | DOI | MR | Zbl
[17] On the Local Existence and Blow-up for Generalized sqg Patches, 2018
[18] Smooth travelling-wave solutions to the inviscid surface quasi-geostrophic equation, Int. Math. Res. Not., Volume 6 (2019), pp. 1744-1757 | DOI | MR | Zbl
[19] Surface quasi-geostrophic dynamics, J. Fluid Mech., Volume 282 (1995), pp. 1-20 | DOI | MR | Zbl
[20] Global Solutions of a Surface Quasi-Geostrophic Front Equation, 2018
[21] Global Solutions for a Family of gsqg Front Equations, 2020
[22] KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 45, Springer-Verlag, Berlin, 2003 | MR | Zbl
[23] A simple energy pump for the surface quasi-geostrophic equation, Volume 7 (2012), pp. 175-179 | MR | Zbl
[24] Finite time singularity for the modified SQG patch equation, Ann. Math. (2), Volume 184 (2016) no. 3, pp. 909-948 | DOI | MR | Zbl
[25] Birkhoff normal form and long time existence for periodic gravity water waves (preprint) | arXiv | Zbl
[26] Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[27] Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces or , Commun. Math. Phys., Volume 277 (2008) no. 1, pp. 45-67 | DOI | MR | Zbl
[28] Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow, Phys. Fluids, Volume 9 (1997) no. 4, pp. 876-882 | DOI | MR | Zbl
[29] Geophysical Fluid Dynamics, 1, Springer-Verlag, New York and Berlin, 1982 | DOI
[30] Dynamical problems in non-linear advective partial differential equations, University of Chicago, Department of Mathematics, 1995 (PhD thesis) | MR
[31] Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 685-696 | DOI | MR | Zbl
Cité par Sources :