Local limit of nonlocal traffic models: Convergence results and total variation blow-up
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1653-1666.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Consider a nonlocal conservation law where the flux function depends on the convolution of the solution with a given kernel. In the singular local limit obtained by letting the convolution kernel converge to the Dirac delta one formally recovers a conservation law. However, recent counter-examples show that in general the solutions of the nonlocal equations do not converge to a solution of the conservation law. In this work we focus on nonlocal conservation laws modeling vehicular traffic: in this case, the convolution kernel is anisotropic. We show that, under fairly general assumptions on the (anisotropic) convolution kernel, the nonlocal-to-local limit can be rigorously justified provided the initial datum satisfies a one-sided Lipschitz condition and is bounded away from 0. We also exhibit a counter-example showing that, if the initial datum attains the value 0, then there are severe obstructions to a convergence proof.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.002
Classification : 35L65
Mots-clés : Traffic model, Nonlocal conservation law, Anisotropic kernel, Nonlocal continuity equation, Local limit, Oleĭnik estimate
Colombo, Maria 1 ; Crippa, Gianluca 2 ; Marconi, Elio 2 ; Spinolo, Laura V. 3

1 a EPFL SB, Station 8, CH-1015 Lausanne, Switzerland
2 b Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
3 c IMATI-CNR, via Ferrata 5, I-27100 Pavia, Italy
@article{AIHPC_2021__38_5_1653_0,
     author = {Colombo, Maria and Crippa, Gianluca and Marconi, Elio and Spinolo, Laura V.},
     title = {Local limit of nonlocal traffic models: {Convergence} results and total variation blow-up},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1653--1666},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.12.002},
     mrnumber = {4300935},
     zbl = {1473.35360},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.002/}
}
TY  - JOUR
AU  - Colombo, Maria
AU  - Crippa, Gianluca
AU  - Marconi, Elio
AU  - Spinolo, Laura V.
TI  - Local limit of nonlocal traffic models: Convergence results and total variation blow-up
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1653
EP  - 1666
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.002/
DO  - 10.1016/j.anihpc.2020.12.002
LA  - en
ID  - AIHPC_2021__38_5_1653_0
ER  - 
%0 Journal Article
%A Colombo, Maria
%A Crippa, Gianluca
%A Marconi, Elio
%A Spinolo, Laura V.
%T Local limit of nonlocal traffic models: Convergence results and total variation blow-up
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1653-1666
%V 38
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.002/
%R 10.1016/j.anihpc.2020.12.002
%G en
%F AIHPC_2021__38_5_1653_0
Colombo, Maria; Crippa, Gianluca; Marconi, Elio; Spinolo, Laura V. Local limit of nonlocal traffic models: Convergence results and total variation blow-up. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1653-1666. doi : 10.1016/j.anihpc.2020.12.002. http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.002/

[1] Amorim, P.; Colombo, R.M.; Teixeira, A. On the numerical integration of scalar nonlocal conservation laws, ESAIM: Math. Model. Numer. Anal., Volume 49 (2015) no. 1, pp. 19-37 | DOI | Numdam | MR | Zbl

[2] Berthelin, F.; Goatin, P. Regularity results for the solutions of a non-local model of traffic flow, Discrete Contin. Dyn. Syst., Volume 39 (2019) no. 6, pp. 3197-3213 | DOI | MR | Zbl

[3] Betancourt, F.; Bürger, R.; Karlsen, K.H.; Tory, E.M. On nonlocal conservation laws modelling sedimentation, Nonlinearity, Volume 24 (2011) no. 3, pp. 855-885 | DOI | MR | Zbl

[4] Blandin, S.; Goatin, P. Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., Volume 132 (2016) no. 2, pp. 217-241 | DOI | MR | Zbl

[5] Bressan, A.; Shen, W. On traffic flow with nonlocal flux: a relaxation representation, 2019 | arXiv | MR | Zbl

[6] Chiarello, F.A.; Goatin, P. Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: M2AN, Volume 52 (2018) no. 1, pp. 163-180 | DOI | Numdam | MR | Zbl

[7] Colombo, M.; Crippa, G.; Graff, M.; Spinolo, L.V. On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws, 2019 | arXiv | MR | Zbl

[8] Colombo, M.; Crippa, G.; Spinolo, L.V. On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 1131-1167 | DOI | MR | Zbl

[9] Colombo, R.M.; Garavello, M.; Lécureux-Mercier, M. A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 4 | DOI | MR | Zbl

[10] Colombo, R.M.; Herty, M.; Mercier, M. Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., Volume 17 (2011) no. 2, pp. 353-379 | DOI | Numdam | MR | Zbl

[11] Crippa, G.; Lécureux-Mercier, M. Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, NoDEA Nonlinear Differ. Equ. Appl., Volume 20 (2013) no. 3, pp. 523-537 | DOI | MR | Zbl

[12] Dafermos, C.M. Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 325, Springer-Verlag, Berlin, 2016 | MR | Zbl

[13] Goatin, P.; Scialanga, S. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, Volume 11 (2016) no. 1, pp. 107-121 | DOI | MR | Zbl

[14] Keimer, A.; Pflug, L. Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equ., Volume 263 (2017) no. 7, pp. 4023-4069 | DOI | MR | Zbl

[15] Keimer, A.; Pflug, L. On approximation of local conservation laws by nonlocal conservation laws, J. Math. Anal. Appl., Volume 475 (2019) no. 2, pp. 1927-1955 | DOI | MR | Zbl

[16] Li, D.; Li, T. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Netw. Heterog. Media, Volume 6 (2011) no. 4, pp. 681-694 | DOI | MR | Zbl

[17] Oleĭnik, O.A. Discontinuous solutions of non-linear differential equations, Am. Math. Soc. Transl., Volume 2 (1963) no. 26, pp. 95-172 | MR | Zbl

[18] Zumbrun, K. On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math., Volume 57 (1999) no. 3, pp. 573-600 | DOI | MR | Zbl

Cité par Sources :