In this paper we prove unique continuation principles for some systems of elliptic partial differential equations satisfying a suitable superlinearity condition. As an application, we obtain nonexistence of nontrivial (not necessarily positive) radial solutions for the Lane-Emden system posed in a ball, in the critical and supercritical regimes. Some of our results also apply to general fully nonlinear operators, such as Pucci's extremal operators, being new even for scalar equations.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.001
Mots-clés : Unique continuation, Elliptic system, Lane-Emden, Nonexistence
@article{AIHPC_2021__38_5_1667_0, author = {Moreira dos Santos, Ederson and Nornberg, Gabrielle and Soave, Nicola}, title = {On unique continuation principles for some elliptic systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1667--1680}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2021}, doi = {10.1016/j.anihpc.2020.12.001}, mrnumber = {4300936}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.001/} }
TY - JOUR AU - Moreira dos Santos, Ederson AU - Nornberg, Gabrielle AU - Soave, Nicola TI - On unique continuation principles for some elliptic systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1667 EP - 1680 VL - 38 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.001/ DO - 10.1016/j.anihpc.2020.12.001 LA - en ID - AIHPC_2021__38_5_1667_0 ER -
%0 Journal Article %A Moreira dos Santos, Ederson %A Nornberg, Gabrielle %A Soave, Nicola %T On unique continuation principles for some elliptic systems %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1667-1680 %V 38 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.001/ %R 10.1016/j.anihpc.2020.12.001 %G en %F AIHPC_2021__38_5_1667_0
Moreira dos Santos, Ederson; Nornberg, Gabrielle; Soave, Nicola. On unique continuation principles for some elliptic systems. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1667-1680. doi : 10.1016/j.anihpc.2020.12.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.001/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623-727 | DOI | MR | Zbl
[2] Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Am. J. Math., Volume 102 (1980) no. 1, pp. 179-217 | DOI | MR | Zbl
[3] Unique continuation for fully nonlinear elliptic equations, Math. Res. Lett., Volume 18 (2011) no. 5, pp. 921-926 | DOI | MR | Zbl
[4] Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems, J. Funct. Anal., Volume 264 (2013) no. 1, pp. 62-96 | DOI | MR | Zbl
[5] On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., Volume 49 (1996) no. 4, pp. 365-397 | DOI | MR | Zbl
[6] Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995 | MR | Zbl
[7] The free boundary in the Thomas-Fermi atomic model, J. Differ. Equ., Volume 32 (1979) no. 3, pp. 335-356 | DOI | MR | Zbl
[8] Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations, J. Differ. Equ., Volume 60 (1985) no. 3, pp. 420-433 | DOI | MR | Zbl
[9] Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astron. Fys., Volume 26 (1939) no. 17, p. 9 | MR | Zbl
[10] Some remarks on strong unique continuation for the Laplace operator and its powers, Commun. Partial Differ. Equ., Volume 24 (1999) no. 5–6, pp. 1079-1094 | DOI | MR | Zbl
[11] Strong unique continuation for products of elliptic operators of second order, Trans. Am. Math. Soc., Volume 362 (2010) no. 1, pp. 345-355 | DOI | MR | Zbl
[12] Existence and uniqueness of positive radial solutions for the Lane-Emden system, Nonlinear Anal., Volume 57 (2004) no. 3, pp. 341-348 | DOI | MR | Zbl
[13] Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5869-5877 | DOI | MR
[14] Monotonicity properties of variational integrals, weights and unique continuation, Indiana Univ. Math. J., Volume 35 (1986) no. 2, pp. 245-268 | DOI | MR | Zbl
[15] Unique continuation for elliptic operators: a geometric-variational approach, Commun. Pure Appl. Math., Volume 40 (1987) no. 3, pp. 347-366 | DOI | MR | Zbl
[16] Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[17] Singular sets of solutions to elliptic equations, Indiana Univ. Math. J., Volume 43 (1994) no. 3, pp. 983-1002 | DOI | MR | Zbl
[18] The Analysis of Linear Partial Differential Operators. IV: Fourier Integral Operators, Classics in Mathematics, Springer-Verlag, Berlin, 2009 (Reprint of the 1994 edition) | MR | Zbl
[19] Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math. (2), Volume 121 (1985) no. 3, pp. 463-494 (With an appendix by E.M. Stein) | DOI | MR | Zbl
[20] Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Commun. Pure Appl. Math., Volume 54 (2001) no. 3, pp. 339-360 | DOI | MR | Zbl
[21] Maximum principle for fully nonlinear equations via the iterated comparison function method, Math. Ann., Volume 339 (2007) no. 2, pp. 461-484 | DOI | MR | Zbl
[22] Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differ. Equ., Volume 83 (1990) no. 2, pp. 348-367 | DOI | MR | Zbl
[23] Nodal sets of solutions of elliptic and parabolic equations, Commun. Pure Appl. Math., Volume 44 (1991) no. 3, pp. 287-308 | DOI | MR | Zbl
[24] A Rellich type identity and applications, Commun. Partial Differ. Equ., Volume 18 (1993) no. 1–2, pp. 125-151 | DOI | MR | Zbl
[25] Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 1, pp. 129-169 | DOI | MR | Zbl
[26] The construction of principal spectral curves for Lane-Emden systems and applications, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 29 (2000) no. 1, pp. 193-229 | Numdam | MR | Zbl
[27] Symmetry properties of positive solutions for fully nonlinear elliptic systems, J. Differ. Equ., Volume 269 (2020), pp. 4175-4191 | DOI | MR
[28] Unique continuation for elliptic equations, Trans. Am. Math. Soc., Volume 95 (1960), pp. 81-91 | DOI | MR | Zbl
[29] Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., Volume 44 (2012) no. 4, pp. 2545-2559 | DOI | MR | Zbl
[30] Unique continuation for sublinear elliptic equations based on Carleman estimates, J. Differ. Equ., Volume 265 (2018) no. 11, pp. 6009-6035 | DOI | MR
[31] Least energy nodal solutions of Hamiltonian elliptic systems with Neumann boundary conditions, J. Differ. Equ., Volume 265 (2018) no. 12, pp. 6127-6165 | DOI | MR
[32] Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE, Int. Math. Res. Not., Volume 24 (2018), pp. 7457-7482 | DOI | MR
[33] The nodal set of solutions to some elliptic problems: sublinear equations, and unstable two-phase membrane problem, Adv. Math., Volume 334 (2018), pp. 243-299 | DOI | MR
[34] The nodal set of solutions to some elliptic problems: singular nonlinearities, J. Math. Pures Appl., Volume 9 (2019) no. 128, pp. 264-296 | DOI | MR
[35] The unique continuation property of sublinear equations, SIAM J. Math. Anal., Volume 50 (2018) no. 4, pp. 3919-3938 | DOI | MR
[36] Symmetry properties in systems of semilinear elliptic equations, J. Differ. Equ., Volume 42 (1981) no. 3, pp. 400-413 | DOI | MR | Zbl
Cité par Sources :