On unique continuation principles for some elliptic systems
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1667-1680.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we prove unique continuation principles for some systems of elliptic partial differential equations satisfying a suitable superlinearity condition. As an application, we obtain nonexistence of nontrivial (not necessarily positive) radial solutions for the Lane-Emden system posed in a ball, in the critical and supercritical regimes. Some of our results also apply to general fully nonlinear operators, such as Pucci's extremal operators, being new even for scalar equations.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.001
Classification : 35J47, 35J60, 35B06, 35B50
Mots-clés : Unique continuation, Elliptic system, Lane-Emden, Nonexistence
Moreira dos Santos, Ederson 1 ; Nornberg, Gabrielle 1 ; Soave, Nicola 2

1 a Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Brazil
2 b Dipartimento di Matematica, Politecnico di Milano, Italy
@article{AIHPC_2021__38_5_1667_0,
     author = {Moreira dos Santos, Ederson and Nornberg, Gabrielle and Soave, Nicola},
     title = {On unique continuation principles for some elliptic systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1667--1680},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.12.001},
     mrnumber = {4300936},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.001/}
}
TY  - JOUR
AU  - Moreira dos Santos, Ederson
AU  - Nornberg, Gabrielle
AU  - Soave, Nicola
TI  - On unique continuation principles for some elliptic systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1667
EP  - 1680
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.001/
DO  - 10.1016/j.anihpc.2020.12.001
LA  - en
ID  - AIHPC_2021__38_5_1667_0
ER  - 
%0 Journal Article
%A Moreira dos Santos, Ederson
%A Nornberg, Gabrielle
%A Soave, Nicola
%T On unique continuation principles for some elliptic systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1667-1680
%V 38
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.001/
%R 10.1016/j.anihpc.2020.12.001
%G en
%F AIHPC_2021__38_5_1667_0
Moreira dos Santos, Ederson; Nornberg, Gabrielle; Soave, Nicola. On unique continuation principles for some elliptic systems. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1667-1680. doi : 10.1016/j.anihpc.2020.12.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.12.001/

[1] Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623-727 | DOI | MR | Zbl

[2] Alinhac, S.; Baouendi, M.S. Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Am. J. Math., Volume 102 (1980) no. 1, pp. 179-217 | DOI | MR | Zbl

[3] Armstrong, S.N.; Silvestre, L. Unique continuation for fully nonlinear elliptic equations, Math. Res. Lett., Volume 18 (2011) no. 5, pp. 921-926 | DOI | MR | Zbl

[4] Bonheure, D.; Moreira dos Santos, E.; Ramos, M. Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems, J. Funct. Anal., Volume 264 (2013) no. 1, pp. 62-96 | DOI | MR | Zbl

[5] Caffarelli, L.; Crandall, M.G.; Kocan, M.; Swiech, A. On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., Volume 49 (1996) no. 4, pp. 365-397 | DOI | MR | Zbl

[6] Caffarelli, L.A.; Cabré, X. Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995 | MR | Zbl

[7] Caffarelli, L.A.; Friedman, A. The free boundary in the Thomas-Fermi atomic model, J. Differ. Equ., Volume 32 (1979) no. 3, pp. 335-356 | DOI | MR | Zbl

[8] Caffarelli, L.A.; Friedman, A. Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations, J. Differ. Equ., Volume 60 (1985) no. 3, pp. 420-433 | DOI | MR | Zbl

[9] Carleman, T. Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astron. Fys., Volume 26 (1939) no. 17, p. 9 | MR | Zbl

[10] Colombini, F.; Grammatico, C. Some remarks on strong unique continuation for the Laplace operator and its powers, Commun. Partial Differ. Equ., Volume 24 (1999) no. 5–6, pp. 1079-1094 | DOI | MR | Zbl

[11] Colombini, F.; Koch, H. Strong unique continuation for products of elliptic operators of second order, Trans. Am. Math. Soc., Volume 362 (2010) no. 1, pp. 345-355 | DOI | MR | Zbl

[12] Dalmasso, R. Existence and uniqueness of positive radial solutions for the Lane-Emden system, Nonlinear Anal., Volume 57 (2004) no. 3, pp. 341-348 | DOI | MR | Zbl

[13] Farina, A. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5869-5877 | DOI | MR

[14] Garofalo, N.; Lin, F.-H. Monotonicity properties of variational integrals, Ap weights and unique continuation, Indiana Univ. Math. J., Volume 35 (1986) no. 2, pp. 245-268 | DOI | MR | Zbl

[15] Garofalo, N.; Lin, F.-H. Unique continuation for elliptic operators: a geometric-variational approach, Commun. Pure Appl. Math., Volume 40 (1987) no. 3, pp. 347-366 | DOI | MR | Zbl

[16] Gazzola, F.; Grunau, H.-C.; Sweers, G. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[17] Han, Q. Singular sets of solutions to elliptic equations, Indiana Univ. Math. J., Volume 43 (1994) no. 3, pp. 983-1002 | DOI | MR | Zbl

[18] Hörmander, L. The Analysis of Linear Partial Differential Operators. IV: Fourier Integral Operators, Classics in Mathematics, Springer-Verlag, Berlin, 2009 (Reprint of the 1994 edition) | MR | Zbl

[19] Jerison, D.; Kenig, C.E. Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math. (2), Volume 121 (1985) no. 3, pp. 463-494 (With an appendix by E.M. Stein) | DOI | MR | Zbl

[20] Koch, H.; Tataru, D. Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Commun. Pure Appl. Math., Volume 54 (2001) no. 3, pp. 339-360 | DOI | MR | Zbl

[21] Koike, S.; Świech, A. Maximum principle for fully nonlinear equations via the iterated comparison function method, Math. Ann., Volume 339 (2007) no. 2, pp. 461-484 | DOI | MR | Zbl

[22] Li, Y.Y. Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differ. Equ., Volume 83 (1990) no. 2, pp. 348-367 | DOI | MR | Zbl

[23] Lin, F.-H. Nodal sets of solutions of elliptic and parabolic equations, Commun. Pure Appl. Math., Volume 44 (1991) no. 3, pp. 287-308 | DOI | MR | Zbl

[24] Mitidieri, E. A Rellich type identity and applications, Commun. Partial Differ. Equ., Volume 18 (1993) no. 1–2, pp. 125-151 | DOI | MR | Zbl

[25] Montaru, A.; Sirakov, B.; Souplet, P. Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 1, pp. 129-169 | DOI | MR | Zbl

[26] Montenegro, M. The construction of principal spectral curves for Lane-Emden systems and applications, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 29 (2000) no. 1, pp. 193-229 | Numdam | MR | Zbl

[27] Moreira dos Santos, E.; Nornberg, G. Symmetry properties of positive solutions for fully nonlinear elliptic systems, J. Differ. Equ., Volume 269 (2020), pp. 4175-4191 | DOI | MR

[28] Protter, M.H. Unique continuation for elliptic equations, Trans. Am. Math. Soc., Volume 95 (1960), pp. 81-91 | DOI | MR | Zbl

[29] Quittner, P.; Souplet, P. Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., Volume 44 (2012) no. 4, pp. 2545-2559 | DOI | MR | Zbl

[30] Rüland, A. Unique continuation for sublinear elliptic equations based on Carleman estimates, J. Differ. Equ., Volume 265 (2018) no. 11, pp. 6009-6035 | DOI | MR

[31] Saldaña, A.; Tavares, H. Least energy nodal solutions of Hamiltonian elliptic systems with Neumann boundary conditions, J. Differ. Equ., Volume 265 (2018) no. 12, pp. 6127-6165 | DOI | MR

[32] Sirakov, B. Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE, Int. Math. Res. Not., Volume 24 (2018), pp. 7457-7482 | DOI | MR

[33] Soave, N.; Terracini, S. The nodal set of solutions to some elliptic problems: sublinear equations, and unstable two-phase membrane problem, Adv. Math., Volume 334 (2018), pp. 243-299 | DOI | MR

[34] Soave, N.; Terracini, S. The nodal set of solutions to some elliptic problems: singular nonlinearities, J. Math. Pures Appl., Volume 9 (2019) no. 128, pp. 264-296 | DOI | MR

[35] Soave, N.; Weth, T. The unique continuation property of sublinear equations, SIAM J. Math. Anal., Volume 50 (2018) no. 4, pp. 3919-3938 | DOI | MR

[36] Troy, W.C. Symmetry properties in systems of semilinear elliptic equations, J. Differ. Equ., Volume 42 (1981) no. 3, pp. 400-413 | DOI | MR | Zbl

Cité par Sources :