Conditional stability of multi-solitons for the 1D NLKG equation with double power nonlinearity
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1487-1524.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider the one-dimensional nonlinear Klein-Gordon equation with a double power focusing-defocusing nonlinearity

t2ux2u+u|u|p1u+|u|q1u=0,on[0,)×R,
where 1<q<p<. The main result states the stability in the energy space H1(R)×L2(R) of the sums of decoupled solitary waves with different speeds, up to the natural instabilities. The proof is inspired by the techniques developed for the generalized Korteweg-de Vries equation and the nonlinear Schrödinger equation in a similar context by Martel, Merle and Tsai [14,15]. However, the adaptation of this strategy to a wave-type equation requires the introduction of a new energy functional adapted to the Lorentz transform.

DOI : 10.1016/j.anihpc.2020.11.008
Classification : 35L71, 35B35
Mots-clés : 1D nonlinear Klein-Gordon equation, Multi-solitons, Conditional stability
Yuan, Xu 1

1 CMLS, École polytechnique, CNRS, Institut Polytechnique de Paris, F-91128 Palaiseau Cedex, France
@article{AIHPC_2021__38_5_1487_0,
     author = {Yuan, Xu},
     title = {Conditional stability of multi-solitons for the {1D} {NLKG} equation with double power nonlinearity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1487--1524},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.008},
     mrnumber = {4300930},
     zbl = {1471.35034},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.008/}
}
TY  - JOUR
AU  - Yuan, Xu
TI  - Conditional stability of multi-solitons for the 1D NLKG equation with double power nonlinearity
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1487
EP  - 1524
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.008/
DO  - 10.1016/j.anihpc.2020.11.008
LA  - en
ID  - AIHPC_2021__38_5_1487_0
ER  - 
%0 Journal Article
%A Yuan, Xu
%T Conditional stability of multi-solitons for the 1D NLKG equation with double power nonlinearity
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1487-1524
%V 38
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.008/
%R 10.1016/j.anihpc.2020.11.008
%G en
%F AIHPC_2021__38_5_1487_0
Yuan, Xu. Conditional stability of multi-solitons for the 1D NLKG equation with double power nonlinearity. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1487-1524. doi : 10.1016/j.anihpc.2020.11.008. http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.008/

[1] Béthuel, F.; Gravejat, P.; Smets, D. Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Ann. Inst. Fourier, Volume 64 (2014) no. 1, pp. 19-70 | DOI | Numdam | MR | Zbl

[2] Berestycki, H.; Lions, P.-L. Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983) no. 4, pp. 313-345 | DOI | MR | Zbl

[3] Buslaev, V.S.; Perelman, G.S. On the stability of solitary waves for nonlinear Schrödinger equations, Nonlinear Evolution Equations, Amer. Math. Soc. Transl. Ser. 2, Vol. 164, Adv. Math. Sci., vol. 22, Amer. Math. Soc., Providence, RI, 1995, pp. 75-98 | MR | Zbl

[4] Combet, V. Multi-soliton solutions for the supercritical gKdV equations, Commun. Partial Differ. Equ., Volume 36 (2011) no. 3, pp. 380-419 | DOI | MR | Zbl

[5] Contreras, A.; Pelinovsky, D. Stability of multi-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ., Volume 11 (2014) no. 2, pp. 329-353 | DOI | MR | Zbl

[6] Côte, R.; Martel, Y.; Merle, F. Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 273-302 | DOI | MR | Zbl

[7] Côte, R.; Muñoz, C. Multi-solitons for nonlinear Klein-Gordon equations, Forum Math. Sigma, Volume 2 (2014) | DOI | MR | Zbl

[8] Ginibre, J.; Velo, G. The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., Volume 189 (1985) no. 4, pp. 487-505 | DOI | MR | Zbl

[9] Krieger, J.; Nakanishi, K.; Schlag, W. Center-stable manifold of the ground state in the energy space for the critical wave equation, Math. Ann., Volume 361 (2015) no. 1–2, pp. 1-50 | DOI | MR | Zbl

[10] Le Coz, S.; Wu, Y. Stability of multisolitons for the derivative nonlinear Schrödinger equation, Int. Math. Res. Not. (2018) no. 13, pp. 4120-4170 | MR | Zbl

[11] Martel, Y. Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Am. J. Math., Volume 127 (2005) no. 5, pp. 1103-1140 | DOI | MR | Zbl

[12] Martel, Y.; Merle, F. Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 849-864 | DOI | Numdam | MR | Zbl

[13] Martel, Y.; Merle, F. Construction of multi-solitons for the energy-critical wave equation in dimension 5, Arch. Ration. Mech. Anal., Volume 222 (2016) no. 3, pp. 1113-1160 | DOI | MR | Zbl

[14] Martel, Y.; Merle, F.; Tsai, T.-P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 347-373 | DOI | MR | Zbl

[15] Martel, Y.; Merle, F.; Tsai, T.-P. Stability in H1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006) no. 3, pp. 405-466 | DOI | MR | Zbl

[16] Miao, C.; Tang, X.; Xu, G. Stability of the traveling waves for the derivative Schrödinger equation in the energy space, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2 | DOI | MR | Zbl

[17] Nakanishi, K.; Schlag, W. Invariant manifolds and dispersive Hamiltonian evolution equations, EMS, Zürich (Zurich Lectures in Advanced Mathematics. European Mathematical Society) (2011) | MR | Zbl

[18] Nakanishi, K.; Schlag, W. Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption, Arch. Ration. Mech. Anal., Volume 203 (2012) no. 3, pp. 809-851 | DOI | MR | Zbl

[19] Perelman, G. Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations, Spectral Theory, Microlocal Analysis, Singular Manifolds, Math. Top., 14, Adv. Partial Differential Equations, Akademie Verlag, Berlin, 1997, pp. 78-137 | MR | Zbl

[20] Rodnianski, I.; Schlag, W.; Soffer, A. Asymptotic stability of N-soliton states of NLS (Preprint) | arXiv

[21] Yuan, X. On multi-solitons for the energy-critical wave equation in dimension 5, Nonlinearity, Volume 32 (2019) no. 12, pp. 5017-5048 | DOI | MR | Zbl

Cité par Sources :