Phase transitions on the Markov and Lagrange dynamical spectra
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1429-1459.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The Markov and Lagrange dynamical spectra were introduced by Moreira and share several geometric and topological aspects with the classical ones. However, some features of generic dynamical spectra associated to hyperbolic sets can be proved in the dynamical case and we do not know if they are true in classical case.

They can be a good source of natural conjectures about the classical spectra: it is natural to conjecture that some properties which hold for generic dynamical spectra associated to hyperbolic maps also hold for the classical Markov and Lagrange spectra.

In this paper, we show that, for generic dynamical spectra associated to horseshoes, there are transition points a and a˜ in the Markov and Lagrange spectra respectively, such that for any δ>0, the intersection of the Markov spectrum with (,aδ) has Hausdorff dimension smaller than one, while the intersection of the Markov spectrum with (a,a+δ) has non-empty interior. Similarly, the intersection of the Lagrange spectrum with (,a˜δ) has Hausdorff dimension smaller than one, while the intersection of the Lagrange spectrum with (a˜,a˜+δ) has non-empty interior. We give an open set of examples where aa˜ and we prove that, in the conservative case, generically, a=a˜ and, for any δ>0, the intersection of the Lagrange spectrum with (aδ,a) has Hausdorff dimension one.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.007
Mots-clés : Fractal geometry, Markov and Lagrange dynamical spectra, Lagrange dynamical spectrum, Horseshoes and Regular Cantor sets, Hyperbolic dynamics, Diophantine approximations
Lima, Davi 1 ; Moreira, Carlos Gustavo 2, 3

1 a Instituto de Matemática, Universidade Federal de Alagoas, Av. Lourival Melo Mota s/n, 57072-900, Maceió, Brazil
2 b School of Mathematical Sciences, Nankai University, Tianjin 300071, PR China
3 c IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil
@article{AIHPC_2021__38_5_1429_0,
     author = {Lima, Davi and Moreira, Carlos Gustavo},
     title = {Phase transitions on the {Markov} and {Lagrange} dynamical spectra},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1429--1459},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.007},
     mrnumber = {4300928},
     zbl = {1483.37036},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.007/}
}
TY  - JOUR
AU  - Lima, Davi
AU  - Moreira, Carlos Gustavo
TI  - Phase transitions on the Markov and Lagrange dynamical spectra
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1429
EP  - 1459
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.007/
DO  - 10.1016/j.anihpc.2020.11.007
LA  - en
ID  - AIHPC_2021__38_5_1429_0
ER  - 
%0 Journal Article
%A Lima, Davi
%A Moreira, Carlos Gustavo
%T Phase transitions on the Markov and Lagrange dynamical spectra
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1429-1459
%V 38
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.007/
%R 10.1016/j.anihpc.2020.11.007
%G en
%F AIHPC_2021__38_5_1429_0
Lima, Davi; Moreira, Carlos Gustavo. Phase transitions on the Markov and Lagrange dynamical spectra. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1429-1459. doi : 10.1016/j.anihpc.2020.11.007. http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.007/

[1] Astels, S. Cantor sets and numbers with restricted partial quotients, University of Waterloo, 1999 (Ph.D. Thesis) | MR

[2] Bumby, R.T. Hausdorff dimensions of Cantor sets, J. Reine Angew. Math., Volume 331 (1982), pp. 192-206 | MR | Zbl

[3] Cusick, T.W.; Flahive, M.E. Markoff and Lagrange Spectra, Mathematical Surveys and Monographs, vol. 30, Amer. Math. Soc., 1989 | MR | Zbl

[4] Cerqueira, A.; Matheus, C.; Moreira, C.G. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra, J. Mod. Dyn., Volume 12 (2018), pp. 151-174 | DOI | MR | Zbl

[5] González-Enriquez, A.; de la Lavre, R. Analytic smoothing of geometric maps with applications to KAM theory, J. Differ. Equ., Volume 245 (2008), pp. 1243-1298 | DOI | MR | Zbl

[6] Hall, M. On the sum and product of continued fractions, Ann. Math., Volume 48 (1947), pp. 966-993 | DOI | MR | Zbl

[7] Hirsch, M. Differential Topology, Springer-Verlag, 1973 | MR | Zbl

[8] Ito, S. Number theoretic expansions, algorithms and metrical observations, Sémin. Théor. Nr. Bordx. (1984), pp. 1-27 | MR | Zbl

[9] Kitchens, B.P. Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts, Universitext, Springer, 1997 | MR | Zbl

[10] Lima, D.; Moreira, C.G. Dynamical characterization of initial segments of the Markov and Lagrange spectra | arXiv | DOI | Zbl

[11] McCluskey, H.; Manning, A. Hausdorff dimension for horseshoes, Ergod. Theory Dyn. Syst., Volume 3 (1983), pp. 251-260 | DOI | MR | Zbl

[12] Markoff, A. Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 15 (1879), pp. 381-406 | DOI | JFM

[13] Moreira, C.G. Geometric properties of Markov and Lagrange spectra, Ann. Math., Volume 188 (2018), pp. 145-170 | DOI | MR | Zbl

[14] Moreira, C.G. There are no C1-stable intersections of regular Cantor sets, Acta Math., Volume 206 (2011), pp. 311-323 | DOI | MR | Zbl

[15] Moreira, C.G.; Romaña, S. On the Lagrange and Markov dynamical spectra for geodesic flows in surfaces with negative curvature, Ergod. Theory Dyn. Syst., Volume 133 (2015), pp. 77-101

[16] Moreira, C.G.; Romaña, S. On the Lagrange and Markov dynamical spectra | arXiv | Zbl

[17] Moreira, C.G.; Yoccoz, J.-C. Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. Math., Volume 154 (2001), pp. 45-96 | DOI | MR | Zbl

[18] Moreira, C.G.; Yoccoz, J.-C. Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010), pp. 1-68 | DOI | Numdam | MR | Zbl

[19] Palis, J.; Takens, F. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors, Cambridge Univ. Press, 1993 | MR | Zbl

[20] Pesin, Y. Dimension Theory in Dynamical Systems: Contemporary Views and Applications, University of Chicago Press, 1998 | MR | Zbl

[21] Pollicott, M. Analyticity of dimensions for hyperbolic surface diffeomorphisms, Proc. Am. Math. Soc., Volume 143 (2015), pp. 3465-3474 | DOI | MR | Zbl

[22] Ruelle, D. Repellers for real analytic maps, Ergod. Theory Dyn. Syst., Volume 2 (1982), pp. 99-107 | DOI | MR | Zbl

Cité par Sources :