We establish the regularity in 2 dimension of solutions to critical elliptic systems in divergence form involving chirality operators of finite -energy.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.006
Mots-clés : Second order elliptic systems, Regularity, Integrability by compensation, Dirac operator, Quaternion algebra
@article{AIHPC_2021__38_5_1373_0, author = {Da Lio, Francesca and Rivi\`ere, Tristan}, title = {Critical chirality in elliptic systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1373--1405}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2021}, doi = {10.1016/j.anihpc.2020.11.006}, mrnumber = {4300926}, zbl = {1479.35332}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.006/} }
TY - JOUR AU - Da Lio, Francesca AU - Rivière, Tristan TI - Critical chirality in elliptic systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1373 EP - 1405 VL - 38 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.006/ DO - 10.1016/j.anihpc.2020.11.006 LA - en ID - AIHPC_2021__38_5_1373_0 ER -
%0 Journal Article %A Da Lio, Francesca %A Rivière, Tristan %T Critical chirality in elliptic systems %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1373-1405 %V 38 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.006/ %R 10.1016/j.anihpc.2020.11.006 %G en %F AIHPC_2021__38_5_1373_0
Da Lio, Francesca; Rivière, Tristan. Critical chirality in elliptic systems. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1373-1405. doi : 10.1016/j.anihpc.2020.11.006. http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.006/
[1] A note on Riesz potentials, Duke Math. J., Volume 42 (1975) no. 4, pp. 765-778 | DOI | MR | Zbl
[2] On the equation and application to control of phases, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426 | DOI | MR | Zbl
[3] Factorization theorems for Hardy spaces in several variables, Ann. Math. (2), Volume 103 (1976) no. 3, pp. 611-635 | DOI | MR | Zbl
[4] Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286 | MR | Zbl
[5] Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., Volume 227 (2011), pp. 1300-1348 | DOI | MR | Zbl
[6] 3-commutators revisited, Nonlinear Anal., Volume 165 (2017), pp. 182-197 (preprint 2019) | MR | Zbl
[7] Existence de nappes de tourbillon en dimension deux, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 553-586 (in French) | DOI | MR | Zbl
[8] Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J. Am. Math. Soc., Volume 7 (1994) no. 1, pp. 199-219 | DOI | MR | Zbl
[9] Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014 | MR | Zbl
[10] Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[11] Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions, Comment. Math. Helv., Volume 75 (2000) no. 4, pp. 668-680 | DOI | MR | Zbl
[12] Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 13–14, pp. 773-778 | DOI | MR | Zbl
[13] Bourgain-Brezis type inequality with explicit constants, Interpolation Theory and Applications, Contemp. Math., vol. 445, Amer. Math. Soc., Providence, RI, 2007, pp. 247-252 | DOI | MR | Zbl
[14] Conservation laws for conformally invariant variational problems, Invent. Math., Volume 168 (2007) no. 1, pp. 1-22 | DOI | MR | Zbl
[15] Sub-criticality of Schrödinger systems with antisymmetric potentials, J. Math. Pures Appl. (9), Volume 95 (2011) no. 3, pp. 260-276 | DOI | MR | Zbl
[16] Sequences of smooth global isothermic immersions, Commun. Partial Differ. Equ., Volume 38 (2013) no. 2, pp. 276-303 | DOI | MR | Zbl
[17] T. Rivière, Personal communication.
[18] Schrödinger semigroups, Bull. Am. Math. Soc., Volume 7 (1982) no. 3, pp. 447-526 | DOI | MR | Zbl
[19] Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl
[20] Connections with bounds on curvature, Commun. Math. Phys., Volume 83 (1982) no. 1, pp. 31-42 | DOI | MR | Zbl
[21] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Volume 26 (1969), pp. 318-344 | DOI | MR | Zbl
[22] Quaternions and matrices of quaternions, Linear Algebra Appl., Volume 251 ( January 1997 ) no. 15, pp. 21-57 | MR | Zbl
Cité par Sources :