We study the localization of sets with constant nonlocal mean curvature and prescribed small volume in a bounded open set, proving that they are sufficiently close to critical points of a suitable nonlocal potential. We then consider the fractional perimeter in half-spaces. We prove existence of minimizers under fixed volume constraint, and we show some properties such as smoothness and rotational symmetry.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.005
@article{AIHPC_2021__38_5_1407_0, author = {Malchiodi, Andrea and Novaga, Matteo and Pagliardini, Dayana}, title = {On critical points of the relative fractional perimeter}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1407--1428}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2021}, doi = {10.1016/j.anihpc.2020.11.005}, mrnumber = {4300927}, zbl = {1475.49053}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.005/} }
TY - JOUR AU - Malchiodi, Andrea AU - Novaga, Matteo AU - Pagliardini, Dayana TI - On critical points of the relative fractional perimeter JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1407 EP - 1428 VL - 38 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.005/ DO - 10.1016/j.anihpc.2020.11.005 LA - en ID - AIHPC_2021__38_5_1407_0 ER -
%0 Journal Article %A Malchiodi, Andrea %A Novaga, Matteo %A Pagliardini, Dayana %T On critical points of the relative fractional perimeter %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1407-1428 %V 38 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.005/ %R 10.1016/j.anihpc.2020.11.005 %G en %F AIHPC_2021__38_5_1407_0
Malchiodi, Andrea; Novaga, Matteo; Pagliardini, Dayana. On critical points of the relative fractional perimeter. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428. doi : 10.1016/j.anihpc.2020.11.005. http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.005/
[1] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Am. Math. Soc., Volume 4 (1976) no. 165 (viii+199) | MR | Zbl
[2] Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, vol. 104, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[3] Perturbation Methods and Semilinear Elliptic Problems on , Progress in Mathematics, vol. 240, Birkhäuser Verlag, Basel, 2006 | MR | Zbl
[4] Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math., Volume 134 (2011) no. 3–4, pp. 377-403 | DOI | MR | Zbl
[5] Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 13 (2014) no. 3, pp. 609-639 | MR | Zbl
[6] Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and Its Applications, vol. 20, Oxford University Press, Oxford, 2000 (The one-dimensional Cauchy problem) | MR | Zbl
[7] Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay, Math. Ann., Volume 370 (2018) no. 3–4, pp. 1513-1569 | DOI | Zbl
[8] Nonlocal minimal surfaces, Commun. Pure Appl. Math., Volume 63 (2010) no. 9, pp. 1111-1144 | DOI | MR | Zbl
[9] Volume constrained minimizers of the fractional perimeter with a potential energy, Discrete Contin. Dyn. Syst., Ser. S, Volume 10 (2017) no. 4, pp. 715-727 | MR | Zbl
[10] Nonlocal quantitative isoperimetric inequalities, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 3 | DOI | MR | Zbl
[11] Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Am. Math. Soc., Volume 130 (2002) no. 8, pp. 2351-2361 | DOI | MR | Zbl
[12] Nonlocal minimal Lawson cones, J. Differ. Geom., Volume 109 (2018) no. 1, pp. 111-175 | DOI | MR | Zbl
[13] Area-minimizing regions with small volume in Riemannian manifolds with boundary, Pac. J. Math., Volume 244 (2010) no. 2, pp. 235-260 | DOI | MR | Zbl
[14] Embedded disc-type surfaces with large constant mean curvature and free boundaries, Commun. Contemp. Math., Volume 14 (2012) no. 6 | MR | Zbl
[15] Serrin's over-determined problem on Riemannian manifolds, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 371-400 | DOI | MR | Zbl
[16] Isoperimetry and stability properties of balls with respect to nonlocal energies, Commun. Math. Phys., Volume 336 (2015) no. 1, pp. 441-507 | DOI | MR | Zbl
[17] A quantitative isoperimetric inequality for fractional perimeters, J. Funct. Anal., Volume 261 (2011) no. 3, pp. 697-715 | DOI | MR | Zbl
[18] On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J., Volume 32 (1983) no. 1, pp. 25-37 | DOI | MR | Zbl
[19] Uniqueness of the least-energy solution for a semilinear Neumann problem, Proc. Am. Math. Soc., Volume 128 (2000) no. 6, pp. 1665-1672 | DOI | MR | Zbl
[20] Uniqueness results in nonlinear elliptic problems, Methods Appl. Anal., Volume 8 (2001) no. 2, pp. 227-244 IMS Workshop on Reaction-Diffusion Systems (Shatin, 1999) | DOI | MR | Zbl
[21] A uniqueness result for a semilinear elliptic equation in symmetric domains, Adv. Differ. Equ., Volume 5 (2000) no. 1–3, pp. 193-212 | MR | Zbl
[22] Boundary regularity for solutions of a partitioning problem, Arch. Ration. Mech. Anal., Volume 97 (1987) no. 3, pp. 261-270 | DOI | MR | Zbl
[23] On category, in the sense of Lusternik-Schnirelmann, Topology, Volume 17 (1978) no. 4, pp. 331-348 | DOI | MR | Zbl
[24] Capillarity problems with nonlocal surface tension energies, Commun. Partial Differ. Equ., Volume 42 (2017) no. 9, pp. 1403-1446 | DOI | MR | Zbl
[25] Axial symmetry for fractional capillarity droplets, Commun. Partial Differ. Equ., Volume 43 (2018) no. 12, pp. 1673-1701 | DOI | MR | Zbl
[26] Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 1017-1041 | DOI | MR | Zbl
[27] Sur une inégalité intégrale, J. Lond. Math. Soc., Volume 5 (1930), pp. 162-168 | DOI | JFM | MR
[28] The isoperimetric problem, Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 175-209 | MR | Zbl
[29] Hypersingular Integrals and Their Applications, Analytical Methods and Special Functions, vol. 5, Taylor & Francis, Ltd., London, 2002 | MR | Zbl
[30] On the evolution by fractional mean curvature, Commun. Anal. Geom., Volume 27 (2019) no. 1, pp. 211-249 | DOI | MR | Zbl
[31] Boundary regularity for solutions to various capillarity and free boundary problems, Commun. Partial Differ. Equ., Volume 2 (1977) no. 4, pp. 323-357 | DOI | MR | Zbl
[32] Foliation by constant mean curvature spheres, Pac. J. Math., Volume 147 (1991) no. 2, pp. 381-396 | DOI | MR | Zbl
Cité par Sources :