On critical points of the relative fractional perimeter
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study the localization of sets with constant nonlocal mean curvature and prescribed small volume in a bounded open set, proving that they are sufficiently close to critical points of a suitable nonlocal potential. We then consider the fractional perimeter in half-spaces. We prove existence of minimizers under fixed volume constraint, and we show some properties such as smoothness and rotational symmetry.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.005
Mots-clés : Fractional mean curvature, Isoperimetric sets, Perturbative variational theory
Malchiodi, Andrea 1 ; Novaga, Matteo 2 ; Pagliardini, Dayana 1

1 a Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
2 b Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56217 Pisa, Italy
@article{AIHPC_2021__38_5_1407_0,
     author = {Malchiodi, Andrea and Novaga, Matteo and Pagliardini, Dayana},
     title = {On critical points of the relative fractional perimeter},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1407--1428},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.005},
     mrnumber = {4300927},
     zbl = {1475.49053},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.005/}
}
TY  - JOUR
AU  - Malchiodi, Andrea
AU  - Novaga, Matteo
AU  - Pagliardini, Dayana
TI  - On critical points of the relative fractional perimeter
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1407
EP  - 1428
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.005/
DO  - 10.1016/j.anihpc.2020.11.005
LA  - en
ID  - AIHPC_2021__38_5_1407_0
ER  - 
%0 Journal Article
%A Malchiodi, Andrea
%A Novaga, Matteo
%A Pagliardini, Dayana
%T On critical points of the relative fractional perimeter
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1407-1428
%V 38
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.005/
%R 10.1016/j.anihpc.2020.11.005
%G en
%F AIHPC_2021__38_5_1407_0
Malchiodi, Andrea; Novaga, Matteo; Pagliardini, Dayana. On critical points of the relative fractional perimeter. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428. doi : 10.1016/j.anihpc.2020.11.005. http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.005/

[1] Almgren, F.J. Jr. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Am. Math. Soc., Volume 4 (1976) no. 165 (viii+199) | MR | Zbl

[2] Ambrosetti, A.; Malchiodi, A. Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, vol. 104, Cambridge University Press, Cambridge, 2007 | MR | Zbl

[3] Ambrosetti, A.; Malchiodi, A. Perturbation Methods and Semilinear Elliptic Problems on Rn , Progress in Mathematics, vol. 240, Birkhäuser Verlag, Basel, 2006 | MR | Zbl

[4] Ambrosio, L.; De Philippis, G.; Martinazzi, L. Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math., Volume 134 (2011) no. 3–4, pp. 377-403 | DOI | MR | Zbl

[5] Barrios, B.; Figalli, A.; Valdinoci, E. Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 13 (2014) no. 3, pp. 609-639 | MR | Zbl

[6] Bressan, A. Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and Its Applications, vol. 20, Oxford University Press, Oxford, 2000 (The one-dimensional Cauchy problem) | MR | Zbl

[7] Cabré, X.; Fall, M.M.; Weth, T. Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay, Math. Ann., Volume 370 (2018) no. 3–4, pp. 1513-1569 | DOI | Zbl

[8] Caffarelli, L.; Roquejoffre, J.-M.; Savin, O. Nonlocal minimal surfaces, Commun. Pure Appl. Math., Volume 63 (2010) no. 9, pp. 1111-1144 | DOI | MR | Zbl

[9] Cesaroni, A.; Novaga, M. Volume constrained minimizers of the fractional perimeter with a potential energy, Discrete Contin. Dyn. Syst., Ser. S, Volume 10 (2017) no. 4, pp. 715-727 | MR | Zbl

[10] Di Castro, A.; Novaga, M.; Ruffini, B.; Valdinoci, E. Nonlocal quantitative isoperimetric inequalities, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 3 | DOI | MR | Zbl

[11] Druet, O. Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Am. Math. Soc., Volume 130 (2002) no. 8, pp. 2351-2361 | DOI | MR | Zbl

[12] Davila, J.; Del Pino, M.; Wei, J. Nonlocal minimal Lawson cones, J. Differ. Geom., Volume 109 (2018) no. 1, pp. 111-175 | DOI | MR | Zbl

[13] Fall, M.M. Area-minimizing regions with small volume in Riemannian manifolds with boundary, Pac. J. Math., Volume 244 (2010) no. 2, pp. 235-260 | DOI | MR | Zbl

[14] Fall, M.M. Embedded disc-type surfaces with large constant mean curvature and free boundaries, Commun. Contemp. Math., Volume 14 (2012) no. 6 | MR | Zbl

[15] Fall, M.M.; Minlend, I.A. Serrin's over-determined problem on Riemannian manifolds, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 371-400 | DOI | MR | Zbl

[16] Figalli, A.; Fusco, N.; Maggi, F.; Millot, V.; Morini, M. Isoperimetry and stability properties of balls with respect to nonlocal energies, Commun. Math. Phys., Volume 336 (2015) no. 1, pp. 441-507 | DOI | MR | Zbl

[17] Fusco, N.; Millot, V.; Morini, M. A quantitative isoperimetric inequality for fractional perimeters, J. Funct. Anal., Volume 261 (2011) no. 3, pp. 697-715 | DOI | MR | Zbl

[18] Gonzalez, E.; Massari, U.; Tamanini, I. On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J., Volume 32 (1983) no. 1, pp. 25-37 | DOI | MR | Zbl

[19] Grossi, M. Uniqueness of the least-energy solution for a semilinear Neumann problem, Proc. Am. Math. Soc., Volume 128 (2000) no. 6, pp. 1665-1672 | DOI | MR | Zbl

[20] Grossi, M. Uniqueness results in nonlinear elliptic problems, Methods Appl. Anal., Volume 8 (2001) no. 2, pp. 227-244 IMS Workshop on Reaction-Diffusion Systems (Shatin, 1999) | DOI | MR | Zbl

[21] Grossi, M. A uniqueness result for a semilinear elliptic equation in symmetric domains, Adv. Differ. Equ., Volume 5 (2000) no. 1–3, pp. 193-212 | MR | Zbl

[22] Grüter, M. Boundary regularity for solutions of a partitioning problem, Arch. Ration. Mech. Anal., Volume 97 (1987) no. 3, pp. 261-270 | DOI | MR | Zbl

[23] James, I.M. On category, in the sense of Lusternik-Schnirelmann, Topology, Volume 17 (1978) no. 4, pp. 331-348 | DOI | MR | Zbl

[24] Maggi, F.; Valdinoci, E. Capillarity problems with nonlocal surface tension energies, Commun. Partial Differ. Equ., Volume 42 (2017) no. 9, pp. 1403-1446 | DOI | MR | Zbl

[25] Mihaila, C. Axial symmetry for fractional capillarity droplets, Commun. Partial Differ. Equ., Volume 43 (2018) no. 12, pp. 1673-1701 | DOI | MR | Zbl

[26] Morgan, F.; Johnson, D.L. Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 1017-1041 | DOI | MR | Zbl

[27] Riesz, F. Sur une inégalité intégrale, J. Lond. Math. Soc., Volume 5 (1930), pp. 162-168 | DOI | JFM | MR

[28] Ros, A. The isoperimetric problem, Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 175-209 | MR | Zbl

[29] Samko, S.G. Hypersingular Integrals and Their Applications, Analytical Methods and Special Functions, vol. 5, Taylor & Francis, Ltd., London, 2002 | MR | Zbl

[30] Sáez, M.; Valdinoci, E. On the evolution by fractional mean curvature, Commun. Anal. Geom., Volume 27 (2019) no. 1, pp. 211-249 | DOI | MR | Zbl

[31] Taylor, J.E. Boundary regularity for solutions to various capillarity and free boundary problems, Commun. Partial Differ. Equ., Volume 2 (1977) no. 4, pp. 323-357 | DOI | MR | Zbl

[32] Ye, R. Foliation by constant mean curvature spheres, Pac. J. Math., Volume 147 (1991) no. 2, pp. 381-396 | DOI | MR | Zbl

Cité par Sources :