We prove a stability result of constant equilibria for the three dimensional Navier-Stokes-Poisson system uniform in the inviscid limit. We allow the initial density to be close to a constant and the potential part of the initial velocity to be small independently of the rescaled viscosity parameter ε while the incompressible part of the initial velocity is assumed to be small compared to ε. We then get a unique global smooth solution. We also prove a uniform in ε time decay rate for these solutions. Our approach allows to combine the parabolic energy estimates that are efficient for the viscous equation at ε fixed and the dispersive techniques (dispersive estimates and normal forms) that are useful for the inviscid irrotational system.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.004
@article{AIHPC_2021__38_4_1255_0, author = {Rousset, Fr\'ed\'eric and Sun, Changzhen}, title = {Stability of equilibria uniformly in the inviscid limit for the {Navier-Stokes-Poisson} system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1255--1294}, publisher = {Elsevier}, volume = {38}, number = {4}, year = {2021}, doi = {10.1016/j.anihpc.2020.11.004}, mrnumber = {4266241}, zbl = {1465.76114}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.004/} }
TY - JOUR AU - Rousset, Frédéric AU - Sun, Changzhen TI - Stability of equilibria uniformly in the inviscid limit for the Navier-Stokes-Poisson system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1255 EP - 1294 VL - 38 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.004/ DO - 10.1016/j.anihpc.2020.11.004 LA - en ID - AIHPC_2021__38_4_1255_0 ER -
%0 Journal Article %A Rousset, Frédéric %A Sun, Changzhen %T Stability of equilibria uniformly in the inviscid limit for the Navier-Stokes-Poisson system %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1255-1294 %V 38 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.004/ %R 10.1016/j.anihpc.2020.11.004 %G en %F AIHPC_2021__38_4_1255_0
Rousset, Frédéric; Sun, Changzhen. Stability of equilibria uniformly in the inviscid limit for the Navier-Stokes-Poisson system. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1255-1294. doi : 10.1016/j.anihpc.2020.11.004. http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.004/
[1] Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer Science & Business Media, 2011 | MR | Zbl
[2] Vanishing viscosity limit for incompressible viscoelasticity in two dimensions, Commun. Pure Appl. Math., Volume 72 (2019) no. 10, pp. 2063-2120 | DOI | MR | Zbl
[3] On the global existence and time decay estimates in critical spaces for the Navier-Stokes-Poisson system, Math. Nachr., Volume 290 (2017) no. 13, pp. 1939-1970 | DOI | MR | Zbl
[4] Space-time resonances, Journ. Equ. Dériv. Partielles (2010), pp. 1-10
[5] Nonneutral global solutions for the electron Euler-Poisson system in three dimensions, SIAM J. Math. Anal., Volume 45 (2013) no. 1, pp. 267-278 | DOI | MR | Zbl
[6] Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008 | MR | Zbl
[7] Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, Springer, New York, 2009 | MR | Zbl
[8] Smooth irrotational flows in the large to the Euler-Poisson system in , Commun. Math. Phys., Volume 195 (1998) no. 2, pp. 249-265 | DOI | MR | Zbl
[9] Absence of shocks for one dimensional Euler-Poisson system, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 3, pp. 1057-1121 | DOI | MR | Zbl
[10] Global smooth ion dynamics in the Euler-Poisson system, Commun. Math. Phys., Volume 303 (2011) no. 1, pp. 89-125 | DOI | MR | Zbl
[11] Decay of dissipative equations and negative Sobolev spaces, Commun. Partial Differ. Equ., Volume 37 (2012) no. 12, pp. 2165-2208 | DOI | MR | Zbl
[12] Decay estimates for a class of wave equations, J. Funct. Anal., Volume 254 (2008) no. 6, pp. 1642-1660 | DOI | MR | Zbl
[13] Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. Differ. Equ., Volume 246 (2009) no. 12, pp. 4791-4812 | DOI | MR | Zbl
[14] Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., Volume 44 (1995) no. 2, pp. 603-676 | DOI | MR | Zbl
[15] The Euler-Poisson system in 2D: global stability of the constant equilibrium solution, Int. Math. Res. Not., Volume 4 (2013), pp. 761-826 | DOI | MR | Zbl
[16] Liapunov functions and monotonicity in the Navier-Stokes equation, Tokyo, 1989 (Lecture Notes in Math.), Volume vol. 1450, Springer, Berlin (1990), pp. 53-63 | DOI | MR | Zbl
[17] Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988) no. 7, pp. 891-907 | DOI | MR | Zbl
[18] The Cauchy problem for the two dimensional Euler-Poisson system, J. Eur. Math. Soc., Volume 16 (2014) no. 10, pp. 2211-2266 | DOI | MR | Zbl
[19] Optimal decay rate of the compressible Navier-Stokes-Poisson system in , Arch. Ration. Mech. Anal., Volume 196 (2010) no. 2, pp. 681-713 | DOI | MR | Zbl
[20] The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., Volume 20 (1980) no. 1, pp. 67-104 | MR | Zbl
[21] Invariant Manifolds and Dispersive Hamiltonian Evolution Equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2011 | DOI | MR | Zbl
[22] Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 685-696 | DOI | MR | Zbl
[23] Harmonic Analysis (PMS-43), Volume 43 – Real-Variable Methods, Orthogonality, and Oscillatory Integrals. (PMS-43) , vol. 43, Princeton University Press, 2016 | MR | Zbl
[24] Decay of the Navier-Stokes-Poisson equations, J. Differ. Equ., Volume 253 (2012) no. 1, pp. 273-297 | DOI | MR | Zbl
[25] Global well-posedness for the compressible Navier-Stokes-Poisson system in the framework, Nonlinear Anal., Volume 75 (2012) no. 10, pp. 4156-4175 | DOI | MR | Zbl
[26] Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138, American Mathematical Society, Providence, RI, 2012 | MR | Zbl
Cité par Sources :